首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A Ca2+-binding protein which is capable of activating mammalian Ca2+-activatable cyclic nucleotide phosphodiesterase has been purified from Lumbricus terrestris and characterized. This protein and the Ca2+-dependent protein modulator from bovine tissues have many similar properties. Both proteins have molecular weights of approximately 18,000, isoelectric points of about pH 4, similar and characteristic ultraviolet spectra, and similar amino acid compositions. Both proteins bind calcium ions with high affinity. However, the protein from Lumbricus terrestris binds 2 mol of calcium ions with equal affinity, Kdiss = 6 X 10(-6) M, whereas the Ca2+-dependent protein modulator from bovine tissues binds 4 mol of calcium ions with differing affinities. Although the Ca2+-binding protein of Lumbricus terrestris activates the Ca2+-activatable cyclic nucleotide phosphodiesterase from mammalian tissues, we have failed to detect the existence of a Ca2+-activatable phosphodiesterase activity in Lumbricus terrestris. The activation of phosphodiesterase by the Ca2+-binding protein from Lumbricus terrestris is inhibited by the recently discovered bovine brain modulator binding protein (Wang, J. H., and Desai, R. (1977) J. Biol. Chem. 252, 4175-4184). Since the modulator binding protein has been shown to associate with the mammalian protein modulator to result in phosphodiesterase inhibition, it can be concluded that the Lumbricus terrestris Ca2+-binding protein also associates with the bovine brain modulator binding protein. Attempts to demonstrate the existence of a similar modulator binding protein in Lumbricus terrestris have been unsuccessful.  相似文献   

2.
1. An acidic protein with properties similar to those of troponin C from rabbit skeletal muscle has been shown to be present in bovine and rabbit smooth muscles, chicken gizzard and rabbit liver, kidney and lung. 2. A simple new method involving the use of organic solvents is described for the purification of the troponin C-like proteins from various tissues. 3. The troponin C-like proteins can be distinguished from rabbit skeletal-muscle toponin C by their electrophoretic behaviour on polyacrylamide gels at pH 8.3 in the presence and absence of Ca2+. The troponin C-like proteins have been shown to form complexes with rabbit skeletal-muscle troponin I that migrate on electrophoresis in polyacrylamide gels. 4. Behaviour on electrophoresis, amino acid analysis and the patterns of CNBr digests on polyacrylamide gels indicate that the troponin C-like proteins from bovine uterus and aorta, rabbit uterus, and liver and chicken gizzard are very similar to, if not identical with, bovine brain modulator protein. 5. With bovine cardiac muscle the organic-solvent method yields a preparation consisting of roughly similar amounts of troponin C and troponin C-like protein. 6. By the isotope-dilution technique, troponin C-like protein has been shown to represent 0.42% of the total protein in rabbit uterus. 7. In homogenates of smooth muscle, rabbit lung, kidney and brain, the troponin C-like proteins form a complex with other protein (or proteins) that requires Ca2+ for its formation and that is not dissociated in 9M-urea.  相似文献   

3.
The trigger Ca2+-binding sites in troponin C, those which initiate muscle contraction, are thought to be the first two of four potential sites (sites I-IV). In cardiac troponin C, the first Ca2+-binding site is inactive, and initiation of contraction in cardiac muscle appears to involve only the second site. To study this phenomenon and associated Ca2+-dependent protein conformational changes in cardiac troponin C, the cDNA for the chicken protein was incorporated into a bacterial expression plasmid to allow site-specific mutagenesis. Ca2+-binding site I was activated by deletion of Val-28 and conversion of amino acids 29-32 to those found at the first four positions in the active site I of fast skeletal troponin C. In a series of proteins, Ca2+-binding site II was inactivated by mutation of amino acids Asp-65, Asp-67, and Gly-70. All mutated proteins exhibited the predicted calcium-binding characteristics. The single mutation of converting Asp-65 to Ala was sufficient to inactivate site II. Ca2+-dependent conformational changes in the normal and mutated proteins were monitored by labeling with a sulfhydryl-specific fluorescent dye. Activation of Ca2+-binding site I or inactivation of site II, eliminated the large Ca2+-dependent increase in fluorescence seen in the wild type protein and there was, instead, a Ca2+-dependent decrease in fluorescence. All mutant proteins could associate with troponin I and troponin T to form a troponin complex. Activation of Ca2+-binding site I changed the characteristics of contraction in skinned slow skeletal muscle fibers such that the response to Ca2+ was more cooperative. Inactivation of Ca2+-binding site II abolished Ca2+-dependent contraction in skinned muscle fibers. The data provide a direct demonstration that Ca2+-binding site II in cardiac troponin C is essential for triggering muscle contraction and support the hypothesis that site I functions to modify the characteristics of contraction.  相似文献   

4.
1. The formation of a complex between troponin I and troponin C that is stable in 6M-urea and dependent on Ca2+ was demonstrated in extracts of vertebrate striated and smooth muscles. 2. A method using troponin I coupled to Sepharose is described for the rapid isolation of troponin C from striated and smooth muscles of vertebrates. 3. Troponin C of rabbit cardiac muscle differs significantly in amino acid composition from troponin C of skeletal muscle. The primary structures of troponin C of red and white skeletal muscle are very similar. 4. The troponin C-like protein isolated from rabbit uterus muscle has a slightly different amino acid composition, but possess many similar properties to the forms of troponin C isolated from other muscle types. 5. The electrophoretic mobilities of the I-troponin C complexes formed from components isolated from different muscle types are determined by the troponin I component.  相似文献   

5.
Using Ca2+-dependent hydrophobic interaction chromatography we have identified a novel bovine brain Ca2+-binding protein (CaBP) composed of 21 kDa and 23 kDa polypeptides. This calciprotein was further purified by heat-treatment in the presence of Ca2+ and ion-exchange chromatography. The isolated protein exhibits a number of properties in common with proteins belonging to the calmodulin family of CaBPs, including a Ca2+-dependent electrophoretic mobility shift on SDS-polyacrylamide gel electrophoresis, retention of the ability to bind 45Ca2+ after electrophoresis and Western blotting, and a high content of acidic amino acids. We have recently isolated and characterized a 21 kDa CaBP from bovine brain and conclude that the 21 kDa and 21/23 kDa CaBPs are isoforms since they have very similar U.V. absorption spectra and amino acid compositions, and polyclonal antibodies raised in rabbits against the 21 kDa CaBP cross-react to an identical degree with the 21/23 kDa CaBP as determined by the competitive enzyme-linked immunosorbent assay (ELISA). Both proteins contain carbohydrate, but they differ in the degree of glycosylation. Tissue distribution studies indicate the presence of both 21 kDa and 23 kDa Ca2+-binding polypeptides in bovine trachea, aorta, kidney, skeletal muscle and cardiac muscle, and chicken gizzard smooth muscle.  相似文献   

6.
M Walsh  F C Stevens 《Biochemistry》1978,17(19):3924-3928
Methionine residues have been implicated in the activation of cyclic nucleotide phosphodiesterase by the Ca2+-dependent protein modulator [Walsh, M., & Stevens, F.C. (1977) Biochemistry 16,2742-2749]. Treatment of the modulator with N-chlorosuccinimide in the presence of Ca2+ resulted in selective oxidation of methionine residues at positions 71,72, 76, and, possibly, 109 in the modulator sequence. These residues lie on the surface of the molecule exposed to solvent. This modification has several effects on the modulator protein: (1) the Ca2+-binding properties of the oxidized modulator are changed with apparent loss of high-affinity binding sites, (2) the oxidized protein no longer interacts with phosphodiesterase, and (3) troponin C like activities, viz., Ca2+-dependent change in mobility on urea-polyacrylamide gel electrophoresis and formation of a urea-stable complex with troponin I, are lost upon oxidation of the modulator. The phosphodiesterase binding domain of the modulator protein appears to be located between the second and third Ca2+-binding loops, a region of the molecule known from previous partial proteolysis studies [Walsh, M., Stevens, F.C., Kuznicki, J., & Drabikowski, W.(1977), J. Biol. Chem. 252, 7440-7443] to be exposed in the presence of Ca2+.  相似文献   

7.
In previous studies we have shown that the activation of bovine heart cyclic nucleotide phosphodiesterase by purified protein activator is completely dependent on the presence of Ca2+ and that the protein activator Ca2+ complex is probably the true activator for the enzyme (Teo, T.S. and Wang, J.H. (1973) J. Biol. Chem. 248, 5930-5955). More recent studies have led us to believe that the mechanism of the Ca2+ activation of phosphodiesterase resembles that of the Ca2+ activation of muscle contraction and that the protein activator may play a role similar to troponin. In the present study we show that the protein activator resembles rabbit muscle troponin C in amino acid composition, molecular weight, isoelectric point, and ultraviolet absorption spectrum. Preliminary structural studies also indicate that these two proteins may have evolved from a common ancestral protein through gene duplication. This argument is strengthened by the finding that the tryptic peptide map of the bovine heart protein activator is indistinguishable from that of the bovine brain phosphodiesterase activator protein for which preliminary sequence information also suggests homology to troponin C (Watterson, D.M., Harrelson, W.G., Jr., Keller, P.M., Sharief, F., and Vanaman, T.C. (1976) J. Biol. Chem. 251, 4501-4513).  相似文献   

8.
1. Bovine cardiac-muscle troponin C was digested at cysteine residues 35 and 84, and the C-terminal peptide (residues 84-161) was isolated. 2. The C-terminal peptide contains two Ca2+-binding sites. These sites bind Ca2+ with a binding constant of 2.0 X 10(8) M-1. In the presence of 2 mM-Mg2+ the binding constant for Ca2+ is decreased to 3.7 X 10(7) M-1. The corresponding constants for native troponin C are 5.9 X 10(7) M-1. and 2.9 X 10(7) M-1 respectively. 3. Electrophoretic mobility of the C-terminal peptide is increased in the presence of 0.1 mM-CaCl2 as compared with the mobility in the presence of 2mM-EDTA. The same phenomenon was observed when electrophoresis was performed in the presence of 6 M-urea or 0.1% sodium dodecyl sulphate. 4. When saturated with Ca2+, the C-terminal peptide forms complexes with bovine cardiac-muscle troponin I both in the absence and in the presence of 6 M-urea. This complex is dissociated on removal of Ca2+. 5. The data suggest that the C-terminal peptide of troponin C contains two Ca2+/Mg2+-binding sites and interacts with troponin I. Thus, despite the 30% difference in amino acid composition, the properties of bovine cardiac-muscle troponin C C-terminal peptide are similar to those of rabbit skeletal-muscle troponin C C-terminal peptide.  相似文献   

9.
A Ca2+-dependent regulator protein of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) has previously been isolated from rat testis and shown to be a heat-stable, Ca2+-binding protein with a molecular weight of approximately 17,000. The Ca2+-dependent regulator protein is also structurally similar to troponin-C, the Ca2+-binding component of muscle troponin and Ca2+ mediator of muscle contraction. The present report describes a partial amino acid sequence of the Ca2+-dependent regulator. The protein (148 amino acids) is 50% homologous with skeletal muscle troponin-C, but is 11 residues shorter than the muscle protein. The Ca2+-dependent regulator protein has an NH2-terminal sequence of acetyl-Ala-Asp-Glu, a COOH-terminal sequence of Thr-Ala-Lys and 1 residue of epsilon-trimethyllysine located at position 115. All of these properties are distinct from those of other homologous Ca2+-binding proteins. These properties may account for the biological specificities demonstrated by these proteins as compared to the Ca2+-dependent regulator protein. Based on the sequence and a comparison of the Ca2+-dependent regulator protein to other calcium-binding proteins, our data support the view that all of these moecules contain common sequences, especially at their proposed metal-binding sites.  相似文献   

10.
A novel Mr 17,000 Ca2+-binding protein isolated from bovine brain was found to be a potent inhibitor of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C), also isolated from bovine brain. Halfmaximal inhibition by this calciprotein of the initial rate of phosphorylation of histone III-S by protein kinase C occurred at a calciprotein concentration of 2.2 μM under standard conditions. Comparison of the effects of a number of Ca2+-binding proteins on protein kinase C activity indicated that the Mr 17,000 Ca2+-binding protein was the most potent inhibitor, followed by the intestinal Ca2+-binding protein and calcineurin. Calmodulin, troponin C, S-100 protein and a Mr 21,000 Ca2+-binding protein of bovine brain were relatively weak inhibitors of protein kinase C. The inhibitory effect of the Mr 17,000 Ca2+-binding protein was apparently not due to its interaction with phospholipid or the basic protein substrate and therefore appears to be due to a direct effect on the protein kinase C. These observations suggest that the novel Mr 17,000 Ca2+-binding protein, and possibly other Ca2+-binding proteins, may play a physiological role in regulating the activity of protein kinase C.  相似文献   

11.
We have identified and partially purified an acidic, heat-stable, noncalmodulin protein from bovine brain cytosol that stimulates Ca2+-dependent phosphorylation of an Mr 90K substrate in crude rat brain synaptic membranes. We show that this modulator of phosphorylation (MOP) enhances Ca2+- and phospholipid-dependent protein kinase (C kinase) phosphorylation of this 90K substrate. The 90K substrate is a higher Mr form of an 87K substrate that is a major C kinase substrate in rat brain. The Ca2+-dependent phosphorylation of both substrates is inhibited by the Ca2+-binding proteins S-100 and calmodulin. Both substrates yield phosphopeptide fragments of Mr 9K and 13K after limited proteolysis with V8 protease. Two-dimensional polyacrylamide gel electrophoresis reveals that they have similar acidic isoelectric points (pI 5.0). MOP enhances Ca2+-dependent phosphorylation of the 90K substrate whereas the phosphorylation of 87K is diminished. This reciprocal relationship suggests that the mobility of the 87K substrate in sodium dodecyl sulfate-polyacrylamide gels is decreased to 90K with increasing phosphorylation. MOP may be a novel protein modulator of C kinase-mediated phosphorylation in the nervous system.  相似文献   

12.
The amino acid sequence of a new Ca2+-binding protein (CaVP) from Amphioxus muscle (Cox, J. A., J. Biol. Chem. 261, 13173-13178) has been determined. The protein contains 161 amino acid residues and has a molecular weight of 18,267. The N terminus is blocked by an acetyl group. The two functional Ca2+-binding sites have been localized based on homology with known Ca2+-binding domains, on internal homology and on secondary structure prediction, and appear to be the domains III and IV. The C-terminal half of CaVP, which contains the two Ca2+-binding sites, shows a remarkable similarity with human brain calmodulin (45%) and with rabbit skeletal troponin C (40%). Functional domain III contains 2 epsilon-N-trimethyllysine residues in the alpha-helices flanking the Ca2+-binding loop. Sequence determination revealed two abortive Ca2+-binding domains in the N-terminal half of CaVP with a similarity of 24 and 30% as compared with calmodulin and troponin C, respectively. This half is also characterized by the presence of a disulfide bridge linking the N-terminal helix of domain I to the C-terminal helix of domain II. This disulfide bond is very resistant to reduction in the native state, but not in denatured CaVP. The optically interesting aromatic chromophores (2 tryptophan and 1 tyrosine residues) are all located in the nonfunctional domain II.  相似文献   

13.
Calcium-dependent regulation of NAD kinase.   总被引:11,自引:0,他引:11  
An activator protein of NAD kinase from the pea, Pisumsatavum L., has been shown to be Ca2+-dependent. This plant activator protein also stimulates the activity of modulator protein dependent-cyclic nucleotide phosphodiesterase from porcine brain. This stimulation is similar to that observed with modulator protein isolated from animal sources. Furthermore, Ca2+-dependent modulator proteins isolated from porcine brain, bovine brain, and the coelenterate, Renilla, will regulate the NAD kinase activity of peas. Other common properties of the plant activator protein and animal modulator proteins are their acidic nature, heat stabilities, similar Stokes' radii, and their interactions with troponin I.  相似文献   

14.
We have examined the inhibitory regulation by Ca2+ of the adenylate cyclase activity associated with microsomes isolated from bovine aorta smooth muscle. In the presence of 2 mM MgCl2, Ca2+ (0.8-100 microM) inhibited in a noncompetitive manner activation of the enzyme by GTP, Gpp[NH]p, or forskolin. In all instances the value for half-maximal inhibition was between 2 and 3 microM. In contrast, Ca2+ inhibited the activation by MgCl2 (2-50 mM), alone or in the presence of GTP, in a competitive manner. The inhibition of adenylate cyclase by 10 microM Ca2+ was reversed in the presence of either 5 or 25 microM calmodulin or troponin C. These data show that (i) Ca2+, at concentrations similar to those which activate smooth muscle contraction, inhibits the stimulation of adenylate cyclase by several activators; (ii) Ca2+ and Mg2+ compete for a common site on the smooth muscle adenylate cyclase complex; and (iii) the reversal of Ca2+-dependent inhibition by Ca2+-binding proteins may be produced by chelation of the metal by these proteins.  相似文献   

15.
The skeletal muscle troponin complex, the troponin T subunit of which was labeled with 2-((4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid, showed a fluorescence titration curve with a midpoint of around pCa 6.75. Addition of 2 mM MgCl2 had no effect on the fluorescence titration curve. Therefore, we conclude that Ca2+ binding to the low affinity Ca2+-binding sites of troponin C induces a conformational change of troponin T, but Ca2+ binding to the high affinity Ca2+-binding sites does not.  相似文献   

16.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

17.
A high affinity calcium binding site that is independent of the gamma-carboxyglutamic acid-rich amino-terminal region, has been demonstrated in bovine protein C, as well as in the other vitamin K-dependent proteins (except prothrombin) involved in blood coagulation. gamma-Carboxyglutamic acid-independent calcium binding in protein C is required for its rapid activation by the thrombin-thrombomodulin complex. We have now isolated a Ca2+-binding fragment from a tryptic digest of bovine protein C. The isolated fragment contains the two domains that are homologous to the epidermal growth factor precursor from the light chain of protein C, and a small disulfide bound peptide derived from the heavy chain. The isolated fragment bound 1 mol of Ca2+/mol of protein with a dissociation constant (Kd) of approximately 1 x 10(-4) M. This is similar to the Kd previously determined for binding of a single Ca2+ ion to protein C lacking the gamma-carboxyglutamic acid region. Immunochemical evidence indicated that Ca2+ binding induced a conformational change both in protein C lacking the gamma-carboxyglutamic acid region and in the isolated fragment.  相似文献   

18.
Dictyostelium calmodulin: affinity isolation and characterization   总被引:1,自引:0,他引:1  
The Ca2+-binding regulatory protein calmodulin (CaM) has been purified from the cellular slime mold, Dictyostelium discoideum. Isolation of homogeneous Dictyostelium CaM was accomplished in high yield by ion-exchange chromatography and Ca2+-dependent affinity chromatography on phenothiazine-Sepharose 4B. This isolate has been demonstrated to possess the following physicochemical and functional properties characteristic of other CaM isolates: (i) a molecular weight ca. 16,000; (ii) an amino acid composition similar to other CaMs--with the notable exception that Dictyostelium CaM, as first determined by Bazari and Clarke [(1981) J. Biol. Chem. 256, 3598-3603] lacks the single trimethylated lysine (Tml) residue identified in nearly all CaMs purified to date; (iii) a CNBr peptide map similar to that of other CaMs; (iv) a Ca2+-dependent shift in migration during native- and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses; (v) ability to form Ca2+-dependent complexes with rabbit skeletal muscle troponin I; and (vi) ability to activate in a Ca2+-dependent manner bovine brain cyclic nucleotide phosphodiesterase.  相似文献   

19.
A modified procedure for isolation of troponin from bovine heart is described, which results in a stable and highly phosphorylated protein. 31P-NMR spectra show up to four phosphoserine signals indicating that at least four serine residues of cardiac troponin are phosphorylated in the intact organ. The hydrodynamic parameters of phosphotroponin are almost identical to those previously published. Characteristically cardiac troponin shows a strong tendency to associate that is dependent on protein concentration. Mg2+ may specifically induce an aggregation, which can be observed during sedimentation. This phenomenon seems to be analogous to the Mg2+-induced dimerization of cardiac troponin C [Jaquet, K. and Heilmeyer, L. M. G., Jr (1987) Biochem. Biophys. Res. Commun. 145, 1390-1396]. Upon Mg2+ saturation a shift of one of the four 31P-NMR signals is observed. The affinity of troponin to Ca2+ is reduced when the protein concentration is enhanced only in the presence of Mg2+. This effect of Mg2+ suggests a model for the regulation of the Ca2+-binding affinity of cardiac troponin.  相似文献   

20.
L Massom  H Lee  H W Jarrett 《Biochemistry》1990,29(3):671-681
Binding of trifluoperazine (TFP), a phenothiazine tranquilizer, to porcine brain calmodulin (CaM) and rabbit skeletal muscle troponin C (Tn C) was measured by an automated high-performance liquid chromatography binding assay using a molecular sieving column; 10 micrograms of either protein per injection is sufficient for determining TFP binding, and results are comparable to those obtained by equilibrium dialysis. Very little binding was observed to either protein in the absence of Ca2+ while in the presence of Ca2+ both proteins bind 4 equiv of TFP. Other characteristics of TFP binding however are different for each protein. For CaM, half-maximal binding occurs at 5.8 microM TFP, the Hill coefficient is 0.82, and the fit of the data to the Scatchard equation is consistent with four independent TFP-binding sites. Binding of one melittin displaces two TFP from CaM. Thus, there are two recognizable classes of TFP-binding sites: those that are displaced by melittin and those that are not. TFP causes an increase in the Ca2+ affinity of CaM, and three Ca2+ must be bound to CaM for TFP binding to occur. The studies also yielded a measure of the intrinsic affinity of three of CaM's Ca2(+)-binding sites that is in agreement with previous reports. For troponin C, half-maximal binding occurs at 16 microM TFP, the Hill coefficient is 1.7, and the data best fit the Adair equation for four binding sites. The measured constants K1, K2, K3, and K4 were 2.5 X 10(4), 6.6 X 10(3), 5.8 X 10(5), and 2.0 X 10(5) M-1, respectively, in 1 mM Ca2+ and were similar when Mg2+ was additionally included. TFP also increases troponin C's Ca2+ affinity, and it is the low-affinity, Ca2(+)-specific binding sites that are affected. These studies yielded a measure of the intrinsic affinity of these Ca2(+)-binding sites that is in agreement with previous measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号