首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated at prometaphase by mitotic phosphorylation and binding of its activator, Cdc20. This initiates cyclin A degradation, whereas cyclin B1 is stabilized by the spindle checkpoint. Upon checkpoint release, the RXXL destruction box (D box) was proposed to direct cyclin B1 to core APC/C or Cdc20. In this study, we report that endogenous cyclin B1–Cdk1 is recruited to checkpoint-inhibited, phosphorylated APC/C in prometaphase independently of Cdc20 or the cyclin B1 D box. Like cyclin A, cyclin B1 binds the APC/C by the Cdk cofactor Cks and the APC3 subunit. Prior binding to APC/CCdc20 makes cyclin B1 a better APC/C substrate in metaphase, driving mitotic exit and cytokinesis. We conclude that in prometaphase, the phosphorylated APC/C can recruit both cyclin A and cyclin B1 in a Cks-dependent manner. This suggests that the spindle checkpoint blocks D box recognition of APC/C-bound cyclin B1, whereas distinctive complexes between the N terminus of cyclin A and Cdc20 evade checkpoint control.  相似文献   

2.
An essential aspect of progression through mitosis is the sequential degradation of key mitotic regulators in a process that is mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase [1]. In mitotic cells, two forms of the APC/C exist, APC/C(Cdc20) and APC/C(Cdh1), which differ in their associated WD-repeat proteins (Cdc20 and Cdh1, respectively), time of activation, and substrate specificity [2, 3]. How the WD-repeat proteins contribute to APC/C's activation and substrate specificity is not clear. Many APC/C substrates contain a destruction box element that is necessary for their ubiquitination [4-6]. One such APC/C substrate, the budding yeast anaphase inhibitor Pds1 (securin), is degraded prior to anaphase initiation in a destruction box and APC/C(Cdc20)-dependent manner [3, 7]. Here we find that Pds1 interacts directly with Cdc20 and that this interaction requires Pds1's destruction box. Our results suggest that Cdc20 provides a link between the substrate and the core APC/C and that the destruction box is essential for efficient Cdc20-substrate interaction. We also find that Pds1 does not interact with Cdh1. Finally, the effect of spindle assembly checkpoint activation, known to inhibit APC/C function [8], on the Pds1-Cdc20 interaction is examined.  相似文献   

3.
The anaphase-promoting complex/cyclosome (APC/C) controls a variety of cellular processes through its ability to target numerous protein substrates for timely degradation. Substrate selection by this ubiquitin ligase depends on related activator proteins, Cdc20 and Cdh1, which bind and activate the APC/C at distinct cell cycle stages. Biochemical and structural studies revealed that Cdc20 and Cdh1 carry conserved receptor domains to recognize specific sequence motifs in substrates, such as D and KEN boxes. The mechanisms for ordered degradation of APC/C substrates, however, remain incompletely understood. Here we describe minimal degradation sequences (degrons) sufficient for rapid APC/C-Cdh1–specific in vivo degradation. The polo kinase Cdc5–derived degron contained an essential KEN motif, whereas a single RxxL-type D box was the relevant signal in the Cdc20-derived degradation domain, indicating that either motif may support specific recognition by Cdh1. In both degrons, the APC/C recognition motif was flanked by a nuclear localization sequence. Forced localization of the degron constructs revealed that proteolysis mediated by APC/C-Cdh1 is restricted to the nucleus and maximally active in the nucleoplasm. Levels of Iqg1, a cytoplasmic Cdh1 substrate, decreased detectably later than the nucleus-localized Cdh1 substrate Ase1, indicating that confinement to the nucleus may allow for temporal control of APC/C-Cdh1–mediated proteolysis.  相似文献   

4.
Centrosomes play a crucial role in the directed migration of developing neurons. However, the underlying mechanism is poorly understood. This study has identified a novel disrupted in schizophrenia 1 (DISC1)-interacting protein, named CAMDI after coiled-coil protein associated with myosin II and DISC1, which translocates to the centrosome in a DISC1-dependent manner. Knockdown of CAMDI by shRNA revealed severely impaired radial migration with disoriented centrosomes. A yeast two-hybrid screen identified myosin II as a binding protein of CAMDI. CAMDI interacts preferentially with phosphomyosin II and induces an accumulation of phosphomyosin II at the centrosome in a DISC1-dependent manner. Interestingly, one single nucleotide polymorphism of the CAMDI gene (R828W) is identified, and its gene product was found to reduce the binding ability to phosphomyosin II. Furthermore, mice with overexpression of R828W in neurons exhibit an impaired radial migration. Our findings indicate that CAMDI is required for radial migration probably through DISC1 and myosin II-mediated centrosome positioning during neuronal development.  相似文献   

5.
The anaphase-promoting complex/cyclosome (APC/C) is the ubiquitin ligase essential to mitosis, which ensures that specific proteins are degraded at specific times to control the order of mitotic events. The APC/C coactivator, Cdc20, is targeted by the spindle assembly checkpoint (SAC) to restrict APC/C activity until metaphase, yet early substrates, such as cyclin A, are degraded in the presence of the active checkpoint. Cdc20 and the cyclin-dependent kinase cofactor, Cks, are required for cyclin A destruction, but how they enable checkpoint-resistant destruction has not been elucidated. In this study, we answer this problem: we show that the N terminus of cyclin A binds directly to Cdc20 and with sufficient affinity that it can outcompete the SAC proteins. Subsequently, the Cks protein is necessary and sufficient to promote cyclin A degradation in the presence of an active checkpoint by binding cyclin A–Cdc20 to the APC/C.  相似文献   

6.
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1–mediated epithelial–mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-β–induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial–mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial–mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1–tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-β–activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor–like repeats. Together, these data identify that aberrant bidirectional epithelial–mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.  相似文献   

7.
Mitotic progression is driven by proteolytic destruction of securin and cyclins. These proteins are labeled for destruction by an ubiquitin-protein isopeptide ligase (E3) known as the anaphase-promoting complex or cyclosome (APC/C). The APC/C requires activators (Cdc20 or Cdh1) to efficiently recognize its substrates, which are specified by destruction (D box) and/or KEN box signals. The spindle assembly checkpoint responds to unattached kinetochores and to kinetochores lacking tension, both of which reflect incomplete biorientation of chromosomes, by delaying the onset of anaphase. It does this by inhibiting Cdc20-APC/C. Certain checkpoint proteins interact directly with Cdc20, but it remains unclear how the checkpoint acts to efficiently inhibit Cdc20-APC/C activity. In the fission yeast, Schizosaccharomyces pombe, we find that the Mad3 and Mad2 spindle checkpoint proteins interact stably with the APC/C in mitosis. Mad3 contains two KEN boxes, conserved from yeast Mad3 to human BubR1, and mutation of either of these abrogates the spindle checkpoint. Strikingly, mutation of the N-terminal KEN box abolishes incorporation of Mad3 into the mitotic checkpoint complex (Mad3-Mad2-Slp1 in S. pombe, where Slp1 is the Cdc20 homolog that we will refer to as Cdc20 hereafter) and stable association of both Mad3 and Mad2 with the APC/C. Our findings demonstrate that this Mad3 KEN box is a critical mediator of Cdc20-APC/C inhibition, without which neither Mad3 nor Mad2 can associate with the APC/C or inhibit anaphase onset.  相似文献   

8.
The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction.  相似文献   

9.
The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast.  相似文献   

10.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 and Cdh1 leads to ubiquitin-dependent degradation of securin and cyclin B and thereby promotes the initiation of anaphase and exit from mitosis. Cyclin B and securin ubiquitination depend on a destruction box (D box) sequence in these proteins, but how APC/C bound to Cdc20 or Cdh1 recognizes the D box is poorly understood. By using site-specific photocrosslinking in combination with mutational analyses, we show that the D box directly interacts with an evolutionarily conserved surface on the predicted WD40 propeller structure of Cdh1 and that this interaction is essential for processive substrate ubiquitination. We further show that Cdh1 specifically crosslinks to the APC/C subunit Cdc27 and that Cdh1 binding to APC/C depends on the presence of Cdc27. Our data imply that APC/C is activated by the association of Cdh1 with Cdc27, which enables APC/C to recognize the D box of substrates via Cdh1's propeller domain.  相似文献   

11.
The anaphase-promoting complex/cyclosome (APC/C) is a cell-cycle-regulated essential E3 ubiquitin ligase; however, very little is known about its meiotic regulation. Here we show that fission yeast Mes1 is a substrate of the APC/C as well as an inhibitor, allowing autoregulation of the APC/C in meiosis. Both traits require a functional destruction box (D box) and KEN box. We show that Mes1 directly binds the WD40 domain of the Fizzy family of APC/C activators. Intriguingly, expression of nonubiquitylatable Mes1 blocks cells in metaphase I with high levels of APC/C substrates, suggesting that ubiquitylation of Mes1 is required for partial degradation of cyclin B in meiosis I by alleviating Mes1 inhibitory function. Consistently, a ternary complex, APC/C-Fizzy/Cdc20-Mes1, is stabilized by inhibiting Mes1 ubiquitylation. These results demonstrate that the fine-tuning of the APC/C activity, by a substrate that is also an inhibitor, is required for the precise coordination and transition through meiosis.  相似文献   

12.
The anaphase‐promoting complex/cyclosome (APC/C), a multi‐subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin‐dependent kinase 1 (Cdk1) promotes Cdc20 co‐activator loading in mitosis to form active APC/C‐Cdc20. However, detailed phospho‐regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo‐like kinase (Plx1) and PP2A‐B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1‐loop500) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1‐loop500 in a phosphorylation‐dependent manner and promotes the formation of APC/C‐Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A‐B56 is recruited to the Apc1‐loop500 and differentially promotes dissociation of Plx1 and PP2A‐B56 through dephosphorylation of Plx1‐binding sites. Stable Plx1 binding, which prevents PP2A‐B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1‐loop500 is controlled by distant Apc3‐loop phosphorylation. Our study suggests that phosphorylation‐dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.  相似文献   

13.
The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein “destruction complex” that targets the proto-oncogene β-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity β-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all β-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that β-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all β-catenin-binding sites (including the 15Rs) and find that a direct β-catenin/APC interaction is also not essential for β-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby β-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock β-catenin in the destruction complex to increase the efficiency of β-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of β-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of β-catenin likely accounts for this difference.  相似文献   

14.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 is critical for the metaphase–anaphase transition. APC/C-Cdc20 is required for polyubiquitination and degradation of securin and cyclin B at anaphase onset. The spindle assembly checkpoint delays APC/C-Cdc20 activation until all kinetochores attach to mitotic spindles. In this study, we demonstrate that a HECT (homologous to the E6-AP carboxyl terminus) ubiquitin ligase, Smurf2, is required for the spindle checkpoint. Smurf2 localizes to the centrosome, mitotic midbody, and centromeres. Smurf2 depletion or the expression of a catalytically inactive Smurf2 results in misaligned and lagging chromosomes, premature anaphase onset, and defective cytokinesis. Smurf2 inactivation prevents nocodazole-treated cells from accumulating cyclin B and securin and prometaphase arrest. The silencing of Cdc20 in Smurf2-depleted cells restores mitotic accumulation of cyclin B and securin. Smurf2 depletion results in enhanced polyubiquitination and degradation of Mad2, a critical checkpoint effector. Mad2 is mislocalized in Smurf2-depleted cells, suggesting that Smurf2 regulates the localization and stability of Mad2. These data indicate that Smurf2 is a novel mitotic regulator.  相似文献   

15.
The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)-mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/C(Ama1) mediates Cdc20p destruction. APC/C(Ama1) recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/C(Ama1). Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/C(Cdc20) activity as the cells complete meiosis II and form spores.  相似文献   

16.
The DISC1‐interacting protein CAMDI has been suggested to promote radial migration through centrosome regulation. However, its physiological relevance is unclear. Here, we report the generation and characterization of CAMDI‐deficient mice. CAMDI‐deficient mice exhibit delayed radial migration with aberrant neural circuit formation and psychiatric behaviors including hyperactivity, repetitive behavior, and social abnormality typically observed in autism spectrum disorder patients. Analyses of direct targets of CAMDI identify HDAC6 whose α‐tubulin deacetylase activity is inhibited by CAMDI at the centrosome. CAMDI deficiency increases HDAC6 activity, leading to unstable centrosomes with reduced γ‐tubulin and acetylated α‐tubulin levels. Most importantly, psychiatric behaviors as well as delayed migration are significantly rescued by treatment with Tubastatin A, a specific inhibitor of HDAC6. Our findings indicate that HDAC6 hyperactivation by CAMDI deletion causes psychiatric behaviors, at least in part, through delayed radial migration due to impaired centrosomes.  相似文献   

17.
Receptor-associated protein 80 (RAP80) is a component of the BRCA1-A complex that recruits BRCA1 to DNA damage sites in the DNA damage-induced ubiquitin signaling pathway. RAP80-depleted cells showed defective G(2)-M phase checkpoint control. In this study, we show that RAP80 protein levels fluctuate during the cell cycle. Its expression level peaked in the G(2) phase and declined during mitosis and progression into the G(1) phase. Also, RAP80 is polyubiquitinated and degraded by the anaphase-promoting complex (APC/C)(Cdc20) or (APC/C)(Cdh1). Consistent with this, knockdown of Cdc20 or Cdh1 expression by transfecting with small interfering RNAs blocked RAP80 degradation during mitosis or the G(1) phase, respectively. A conserved destruction box (D box) in RAP80 affected its stability and ubiquitination, which was dependent on APC/cyclosome(Cdc20) (C(Cdc20)) or APC/cyclosome(Cdh1) (C(Cdh1)). In addition, overexpression of RAP80 destruction box1 deletion mutant attenuated mitotic progression. Thus, APC/C(Cdc20) or APC/C(Cdh1) complexes regulate RAP80 stability during mitosis to the G(1) phase, and these events are critical for a novel function of RAP80 in mitotic progression.  相似文献   

18.
The centrosome is crucial for neuronal migration and polarisation, processes that are disrupted in a number of neurodevelopmental disorders including schizophrenia. Mutation of DISC1, associated with increased risk of schizophrenia and psychiatric illness, has been shown to affect the centrosome, but the mechanisms involved have not been elucidated. In this issue of EMBO Reports, Fukuda and colleagues demonstrate that a DISC1‐interacting protein, CAMDI, suppresses the activity of the histone deacetylase HDAC6, thereby promoting centrosome stability and consequently neuronal migration 1 . Loss of CAMDI leads to cortical migration defects and behavioural phenotypes that model autism spectrum disorders and which can be rescued by inhibition of HDAC6. The study provides novel mechanistic insight into centrosome regulation in neurodevelopment.  相似文献   

19.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号