首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematode C. elegans is a classic study object of developmental biology and genetics, which is particularly suitable for studying the molecular bases of meiosis. Developing meiocytes are located in the threadlike gonads of C. elegans in linear gradient order of the stages of meiosis, which facilitates studying the order of intracellular events during meiosis. C. elegans has polycentric chromosomes. This causes a special order of events during meiosis, and as a consequence, meiosis in C. elegance differs from canonical meiosis of most eukaryotes. In the meiotic prophase I, all chromosomes carry single protein “pairing centers.” They are responsible for joining homologous chromosomes in pairs. This initiates the formation of synaptonemal complexes (SCs). Programmed double-stranded DNA breaks appear after initiation of the SC assembly, and they give rise to meiotic recombination. The initiation of meiotic recombination after the chromosome pairing distinguishes the C. elegans meiotic pattern from those in the absolute majority of eukaryotes studied. C. elegans has strict crossing over interference, which allows for the formation of one chiasma per bivalent. In the late prophase I, the polycentric centromeres are remodeled, one of the chromosome ends acquires a cuplike kinetochore, and during two meiotic divisions, chromosomes behave as monocentric. The study of meiosis in C. elegans allows for separate investigation of synapsis and recombination of homologous chromosomes and provides material for studying the evolution of meiosis.  相似文献   

2.
During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.  相似文献   

3.
Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic potentials. There are asymmetries in the abilities of the ends to recombine when duplicated or deleted. In addition, mutations in single genes have been identified that mimic the meiotic effects of a terminal truncation of the X chromosome. The recent cloning and characterization of the C. elegans telomeres has provided a starting point for the study of chromosomal elements mediating the meiotic process.  相似文献   

4.
Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the “meiotic chromosome bouquet,” a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.  相似文献   

5.
From a screen for meiotic Caenorhabditis elegans mutants based on high incidence of males, we identified a novel gene, him-19, with multiple functions in prophase of meiosis I. Mutant him-19(jf6) animals show a reduction in pairing of homologous chromosomes and subsequent bivalent formation. Consistently, synaptonemal complex formation is spatially restricted and possibly involves nonhomologous chromosomes. Also, foci of the recombination protein RAD-51 occur delayed or cease altogether. Ultimately, mutation of him-19 leads to chromosome missegregation and reduced offspring viability. The observed defects suggest that HIM-19 is important for both homology recognition and formation of meiotic DNA double-strand breaks. It therefore seems to be engaged in an early meiotic event, resembling in this respect the regulator kinase CHK-2. Most astonishingly, him-19(jf6) hermaphrodites display worsening of phenotypes with increasing age, whereas defects are more severe in female than in male meiosis. This finding is consistent with depletion of a him-19-dependent factor during the production of oocytes. Further characterization of him-19 could contribute to our understanding of age-dependent meiotic defects in humans.  相似文献   

6.
Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation–dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end–led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the obligate crossover, inducible only in leptotene/zygotene. Unrepaired DSBs and unsynapsed chromosomes maintain this checkpoint, but a crossover intermediate is necessary to shut it down.  相似文献   

7.
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase.  相似文献   

8.
The roundworm Caenorhabditis elegans has a haploid karyotype containing six linear chromosomes. The termini of worm chromosomes have been proposed to play an important role in meiotic prophase, either when homologs are participating in a genome-wide search for their proper partners or in the initiation of synapsis. For each chromosome one end appears to stimulate crossing-over with the correct homolog; the other end lacks this property. We have used a bioinformatics approach to identify six repetitive sequence elements in the sequenced C.elegans genome whose distribution closely parallels these putative meiotic pairing centers (MPC) or homolog recognition regions (HRR). We propose that these six DNA sequence elements, which are largely chromosome specific, may correspond to the genetically defined HRR/MPC elements.  相似文献   

9.
Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n?=?4x?=?48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66–78% of the meiotic cells at the pachytene stage. Solanum demissum (2n?=?6x?=?72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83–98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.  相似文献   

10.
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens  相似文献   

11.
Wu R  Gallo-Meagher M  Littell RC  Zeng ZB 《Genetics》2001,159(2):869-882
Polyploidy has played an important role in higher plant evolution and applied plant breeding. Polyploids are commonly categorized as allopolyploids resulting from the increase of chromosome number through hybridization and subsequent chromosome doubling or autopolyploids due to chromosome doubling of the same genome. Allopolyploids undergo bivalent pairing at meiosis because only homologous chromosomes pair. For autopolyploids, however, all homologous chromosomes can pair at the same time so that multivalents and, therefore, double reductions are formed. In this article, we use a maximum-likelihood method to develop a general polyploid model for estimating gene segregation patterns from molecular markers in a full-sib family derived from an arbitrary polyploid combining meiotic behaviors of both bivalent and multivalent pairings. Two meiotic parameters, one describing the preference of homologous chromosome pairing (expressed as the preferential pairing factor) typical of allopolyploids and the other specifying the degree of double reduction of autopolyploids, are estimated. The type of molecular markers used can be fully informative vs. partially informative or dominant vs. codominant. Simulation studies show that our polyploid model is well suited to estimate the preferential pairing factor and the frequency of double reduction at meiosis, which should help to characterize gene segregation in the progeny of autopolyploids. The implications of this model for linkage mapping, population genetic studies, and polyploid classification are discussed.  相似文献   

12.
Cytogenetics of chromosome pairing in wheat   总被引:2,自引:0,他引:2       下载免费PDF全文
Riley R 《Genetics》1974,78(1):193-203
Meiotic chromosome pairing in Triticum aestivum is controlled by genetic systems promoting and reducing pairing. The pairing of homoeologous chromosomes is prevented principally by the activity of a single locus (Ph) distally located on the long arm of chromosome 5B. In certain hybrids, supernumerary chromosomes (B chromosomes) from Aegilops species can compensate for the absence of chromosome 5B preventing or reducing homoeologous pairing. Temperature-dependent variants and colchicine sensitivity have been used to show that there are at least two stages in the G1 of meiosis at which the occurrence of meiotic pairing is determined. Wheat may differ from lily in the detailed organization of meiosis.  相似文献   

13.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

14.
While many studies have provided significant insight into homolog pairing during meiosis, information on non-homologous pairing is much less abundant. In the present study, fluorescence in situ hybridization (FISH) was used to investigate non-homologous pairing in haploid rice during meiosis. At pachytene, non-homologous chromosomes paired and formed synaptonemal complexes. FISH analysis data indicated that chromosome pairing could be grouped into three major types: (1) single chromosome paired fold-back as the univalent structure, (2) two non-homologous chromosomes paired as the bivalent structure, and (3) three or more non-homologous chromosomes paired as the multivalent structure. In the survey of 70 cells, 65 contained univalents, 45 contained bivalents, and 49 contained multivalent. Moreover, chromosomes 9 and 10 as well as chromosomes 11 and 12 formed non-homologous bivalents at a higher frequency than the other chromosomes. However, chiasma was always detected in the bivalent only between chromosomes 11 and 12 at diakinesis or metaphase I, indicating the pairing between these two chromosomes leads non-homologous recombination during meiosis. The synaptonemal complex formation between non-homologs was further proved by immunodetection of RCE8, PAIR2, and ZEP1. Especially, ZEP1 only loaded onto the paired chromosomes other than the un-paired chromosomes at pachytene in haploid.  相似文献   

15.
During meiosis, chromosomes must find and align with their homologous partners. SUN and KASH-domain protein pairs play a conserved role by establishing transient linkages between chromosome ends and cytoskeletal forces across the intact nuclear envelope (NE). In C.?elegans, a pairing center (PC) on each chromosome mediates homolog pairing and linkage to the microtubule network. We report that the polo kinases PLK-1 and PLK-2 are targeted to the PC by ZIM/HIM-8-pairing proteins. Loss of plk-2 inhibits chromosome pairing and licenses synapsis between nonhomologous chromosomes, indicating that PLK-2 is required for PC-mediated interhomolog interactions. plk-2 is also required for meiosis-specific phosphorylation of SUN-1 and establishment of dynamic SUN/KASH (SUN-1/ZYG-12) modules that promote homolog pairing. Our results provide key insights into the regulation of homolog pairing and reveal that targeting of polo-like kinases to the NE by meiotic chromosomes establishes the conserved linkages to cytoskeletal forces needed for homology assessment.  相似文献   

16.
Li L  Gerecke EE  Zolan ME 《Chromosoma》1999,108(6):384-392
We have used fluorescence in situ hybridization to examine homolog pairing during the synchronous meiosis of the basidiomycete Coprinus cinereus. Using spread preparations of meiotic nuclei, we confirmed previous studies that showed that at 6 h post-karyogamy essentially all meiotic nuclei are in pachytene. We found that homolog pairing occurs rapidly after karyogamy, that a 1 Mb chromosome does not associate more quickly than a 2.5 Mb chromosome, and that interstitial, single-copy sites can associate stably prior to nucleolar fusion. Analysis of two probes for the same pair of homologs revealed that by 4 h after karyogamy each chromosome examined was at least partially paired in all meiotic cells. In addition, these studies showed that chromatin condensation increases after pairing and that chromatin shows stable compaction at pachytene. Received: 4 January 1999; in revised form: 22 June 1999 / Accepted: 20 July 1999  相似文献   

17.
The normal course of meiosis depends on regular pairing of homologous chromosomes. In intergeneric hybrids, including those of wheat, there is no chromosome pairing because there are no homologs. In F1 wheat/rye hybrids, pairing is largely prevented by the pairing homoeologous1 (Ph1) gene. In its presence, there are only rare instances of pairing; most chromosomes are univalent, and their orientation at metaphase I initiates different pathways of the meiotic cycle. The meiotic-like pathway includes a combination of the reductional and the equational + reductional steps at AI followed by the second division. The resulting gametes are mostly non-functional. The mitotic-like pathway involves equational division of univalents at AI and the absence of the second division. Any fertility of wheat/rye hybrids depends on the production of unreduced gametes arising from meiotic restitution (mitotic-like division). We examined the meiotic pairing in wheat/rye hybrids created from wheat lines with single rye chromosome substitutions and Ph1 present. This guaranteed F1 meiosis with one pair of rye homologs. All hybrids formed bivalents, but proportions of meiocytes with bivalents varied. In the meiocytes where bivalents were present, there was a higher tendency for the meiotic-like pathway, while in meiocytes where bivalent pairing failed, the tendency was stronger for the mitotic-like pathway. Among the equationally dividing cells, we observed more than 90 % of meiocytes without bivalents, where rye homologs did not form bivalents, too. The data indicate a potential application of wheat/rye lines in producing genetic stocks of amphidiploids with designated genomic constitutions.  相似文献   

18.
Somatic and meiotic chromosomes of one plant of Anthurium warocqueanum J. Moore and its selfed offspring were analyzed. The parent showed 2n = 30 + 3B in both somatic cells and pollen mother cells. The B chromosomes divided normally in somatic cells, but meiotic associations of Bs varied. Three configurations of three B chromosomes were observed at metaphase I of parent meiosis: one trivalent, one bivalent and one univalent, or three univalents. The number of B chromosomes in offspring ranged from 0 to 6, indicating their transmission from both male and female gametes. Offspring with two B chromosomes appeared in greatest frequency. It was hypothesized that both male and female gametes of the 3 B parent frequently contained one B chromosome through the normal distribution of the bivalent Bs at meiosis and the elimination of the univalent B chromosome due to lagging. Examination of pollen mother cells of offspring also revealed irregular behavior of B chromosomes. With a high number of B chromosomes, normal A chromosome bivalent formation seemed to be reduced. No phenotypic effects of B chromosomes were observed.  相似文献   

19.
The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the MUS-81 and XPF-1 endonucleases act redundantly to process late recombination intermediates to form crossovers during C. elegans meiosis.  相似文献   

20.
Meiotic homolog synapsis is essential to ensure accurate segregation of chromosomes during meiosis. In C. elegans, proper regulation of synapsis and a checkpoint that monitors synapsis relies on the spindle checkpoint components, Mad1 and Mad2, and Pairing Centers (PCs), cis-acting loci that interact with the nuclear envelope to mobilize chromosomes within the nucleus. Here, we test what specific functions of Mad1 and Mad2 are required to regulate and monitor synapsis. We find that a mutation that prevents Mad1’s localization to the nuclear periphery abolishes the synapsis checkpoint but has no effect on Mad2’s localization to the nuclear periphery or synapsis. By contrast, a mutation that prevents Mad1’s interaction with Mad2 abolishes the synapsis checkpoint, delays synapsis and fails to localize Mad2 to the nuclear periphery. These data indicate that Mad1’s primary role in regulating synapsis is through control of Mad2 and that Mad2 can bind other factors at the nuclear periphery. We also tested whether Mad2’s ability to adopt a specific conformation associated with its activity during spindle checkpoint function is required for its role in meiosis. A mutation that prevents Mad2 from adopting its active conformer fails to localize to the nuclear periphery, abolishes the synapsis checkpoint and exhibits substantial defects in meiotic synapsis. Thus, Mad2, and its regulation by Mad1, is an important regulator of meiotic synapsis in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号