首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bcl-2-family proteins and the role of mitochondria in apoptosis   总被引:31,自引:0,他引:31  
Mitochondria are central to many forms of cell death, usually via the release of pro-apoptotic proteins from the mitochondrial intermembrane space. Some intermembrane space proteins, including cytochrome c, Smac/DIABLO, and Omi/Htra2, can induce or enhance caspase activation, whereas others, such as AIF and endonuclease G, might act in a caspase-independent manner. Intermembrane space protein release is often regulated by Bcl-2-family proteins. Recent evidence suggests that pro-apoptotic members of this family, by themselves, can permeabilize the outer mitochondrial membrane without otherwise damaging mitochondria. Mitochondria can contribute to cell death in other ways. For example, they can respond to calcium release from the endoplasmic reticulum by undergoing the mitochondrial permeability transition, which in turn causes outer membrane rupture and the release of intermembrane space proteins. Bcl-2-family proteins can influence the levels of releasable Ca(2+) in the endoplasmic reticulum, and thus determine whether the released Ca(2+) is sufficient to overload mitochondria and induce cell death.  相似文献   

2.
3.
4.
In vitro cloning assays for hematopoietic myeloid and erythroid precursor cells have been used as screening systems to investigate the hematotoxic potential of environmental chemicals in humans and mice. Granulocyte-monocyte progenitors (CFU-GM) from human umbilical cord blood and from mouse bone marrow (Balb/c and B6C3F1) were cultured in the presence of lead and the benzene metabolite catechol. Erythroid precursors (BFU-E) from human umbilical cord blood were cultured in the presence of lead. The in vitro exposure of the human and murine cells resulted in a dose-dependent depression of the colony numbers. The concentration–effect relationship was studied. Results showed that: (1) Based on calculated IC50 values, human progenitors are more sensitive to lead and catechol than are murine progenitors. The dose that caused a 50% decrease in colony formation after catechol exposure was 6 times higher for murine cells (IC50 = 24 μmol/L) than for human cord blood cells (IC50 = 4 μmol/L). Lead was 10–15 times more toxic to human hematopoietic cells (IC50 = 61 μmol/L) than to murine bone marrow cells from both mice strains tested (Balb/c, IC50 = 1060 μmol/L; B6C3F1, IC50 = 536 μmol/L). (2) A lineage specificity was observed after exposure to lead. Human erythroid progenitors (hBFU-E) (IC50 = 3.31 μmol/L) were found to be 20 times more sensitive to the inhibitory effect of lead than were myeloid precursors (hCFU-GM) (IC50 = 63.58 μmol/L). (3) Individual differences in the susceptibility to the harmful effect of lead were seen among cord blood samples. (4) Toxicity of lead to progenitor cells occurred at environmentally relevant concentrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
CD137 is a member of the TNFR family, and reverse signaling through the CD137 ligand, which is expressed as a cell surface transmembrane protein, costimulates or activates APCs. CD137 and CD137 ligand are expressed on small subsets of bone marrow cells. Activation of bone marrow cells through CD137 ligand induces proliferation, colony formation and an increase in cell numbers. Compared with total bone marrow cells, the small subpopulation of progenitor cells that express no lineage markers but express CD117 cells (or Lin(-), CD117(+) cells) responds with the same activities to CD137 ligand signaling, but at a significantly enhanced rate. Concomitantly to proliferation, the cells differentiate to CFU granulocyte-macrophage and CFU macrophage, and then to monocytes and macrophages but not to granulocytes or dendritic cells. Hematopoietic progenitor cells differentiated in the presence of CD137 protein display enhanced phagocytic activity, secrete high levels of IL-10 but little IL-12 in response to LPS, and are incapable of stimulating T cell proliferation. These data demonstrate that reverse CD137 ligand signaling takes place in hematopoietic progenitor cells, in which it induces proliferation, an increase in cell numbers, colony formation, and differentiation toward monocytes and macrophages.  相似文献   

6.
As survival regulation is a key process in multiple myeloma biology, we have studied the Bcl-2 family proteins that can be regulated by three myeloma cell survival factors: interleukin-6 (IL-6), interferon-alpha (IFN-alpha) and insulin-like growth factor (IGF-1). Eleven myeloma cell lines, whose survival and proliferation are dependent on addition of IL-6, variably expressed 10 anti-apoptotic or pro-apoptotic proteins of the Bcl-2-family. When myeloma cells from four cell lines were IL-6 starved and activated with IL-6 or IFN-alpha, we observed that only Mcl-1 expression was up-regulated with myeloma cell survival induction. Nor was obvious regulation of these 10 pro-apoptotic or anti-apoptotic proteins found with IGF-1, another potent myeloma cell survival factor. Our results indicate that the myeloma cell survival activity of IL-6 linked to Bcl-xL regulation cannot be generalized and emphasize that Mcl-1 is the main target of IL-6 and IFN-alpha stimulation. However, other changes in the activity of the Bcl-2 protein family or other apoptosis regulators must be identified to elucidate the IGF-1 action mechanism. Cell Death and Differentiation (2000) 7, 1244 - 1252.  相似文献   

7.
Methylation damage response in hematopoietic progenitor cells   总被引:1,自引:0,他引:1  
The cellular response to methylation DNA damage was compared in multipotent CD34(+) hematopoietic stem cells and mature CD34(-) cells isolated from cord blood of the same donor. Cytofluorimetric analysis of freshly isolated cord blood cells indicated that both cell types were in the G0/G1 phase of the cell cycle. Quantitative RT-PCR identified a general trend towards high expression of several DNA repair genes in CD34(+) cells compared to their terminally differentiated CD34(-) counterparts. The overexpressed genes included members of the mismatch repair (MMR) (MSH2, MSH6, MLH1, PMS2), base excision repair (AAG, APEX), DNA damage reversal (O(6)-methylguanine DNA methyltransferase) (MGMT), and DNA double strand breaks repair pathways. These differences in gene expression were not apparent in CD34(+) and CD34(-) cells obtained following expansion of CD34(+) cells in a medium containing early acting cytokines. Early progenitor CD34(+) and early precursor CD34(-) cells form the two populations isolated under these experimental conditions, and both contain a significant proportion of cycling cells. The methylating agent N-methyl-N-nitrosourea (MNU) induced similar levels of apoptosis in these cycling CD34(+) and CD34(-) cells. Cytotoxicity required the presence of the MGMT inhibitor O(6)-benzylguanine and the timing of MNU cell death (48 and 72h) was similar in CD34(+) and CD34(-) cells. These data indicate that cycling CD34(+) and CD34(-) cells are equally sensitive to methylation damage. MGMT provides significant protection against MNU toxicity and MGMT and MMR play the expected roles in the MNU sensitivity of these cells.  相似文献   

8.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

9.
Circulating hematopoietic progenitor cells in runners.   总被引:1,自引:0,他引:1  
Because endurance exercise causes release of mediators and growth factors active on the bone marrow, we asked whether it might affect circulating hematopoietic progenitor cells (HPCs) in amateur runners [n = 16, age: 41.8 +/- 13.5 (SD) yr, training: 93.8 +/- 31.8 km/wk] compared with sedentary controls (n = 9, age: 39.4 +/- 10.2 yr). HPCs, plasma cortisol, interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), and the growth factor fms-like tyrosine kinase-3 (flt3)-ligand were measured at rest and after a marathon (M; n = 8) or half-marathon (HM; n = 8). Circulating HPC counts (i.e., CD34(+) cells and their subpopulations) were three- to fourfold higher in runners than in controls at baseline. They were unaffected by HM or M acutely but decreased the morning postrace. Baseline cortisol, flt3-ligand, IL-6, and G-CSF levels were similar in runners and controls. IL-6 and G-CSF increased to higher levels after M compared with HM, whereas cortisol and flt3-ligand increased similarly postrace. Our data suggest that increased HPCs reflect an adaptation response to recurrent, exercise-associated release of neutrophils and stress and inflammatory mediators, indicating modulation of bone marrow activity by habitual running.  相似文献   

10.
Hematopoietic stem cells have the potential to develop into multipotent and different lineage-restricted progenitor cells that subsequently generate all mature blood cell types. The classical model of hematopoietic lineage commitment proposes a first restriction point at which all multipotent hematopoietic progenitor cells become committed either to the lymphoid or to the myeloid development, respectively. Recently, this model has been challenged by the identification of murine as well as human hematopoietic progenitor cells with lymphoid differentiation capabilities that give rise to a restricted subset of the myeloid lineages. As the classical model does not include cells with such capacities, these findings suggest the existence of alternative developmental pathways that demand the existence of additional branches in the classical hematopoietic tree. Together with some phenotypic criteria that characterize different subsets of multipotent and lineage-restricted progenitor cells, we summarize these recent findings here.  相似文献   

11.
Merocyanine 540 (MC 540) is an impermeant fluorescent dye that binds preferentially to fluidlike domains of the cell membrane. Photoexcitation of membrane-bound dye causes a breakdown of the normal permeability properties of the membrane and, eventually, cell death. We have used in vitro and in vivo clonal assays to determine the relative sensitivities of different classes of normal murine hematopoietic progenitor cells to MC 540-mediated photosensitization. Late erythroid progenitors (CFU-E) were the most sensitive cells, followed in order of decreasing sensitivity by early erythroid progenitors (BFU-E), megakaryocyte progenitors (CFU-Meg), day 7-spleen colony forming cells (day 7-CFU-S), granulocyte/macrophage progenitors (CFU-GM), and day 11-spleen colony forming cells (day 11-CFU-S). Bipotent progenitors of the granulocyte/macrophage lineage were more sensitive than unipotent macrophage progenitors but less sensitive than unipotent granulocyte progenitors. Progenitors giving rise to large granulocyte/macrophage colonies were more sensitive than progenitors giving rise to small colonies ("clusters"). We conclude that sensitivity to MC 540-mediated photosensitization is develop-mentally regulated and that differences occur even between the most closely related classes of progenitor cells. Our findings indicate the usefulness of MC 540 as a plasma membrane probe. They also support the contention that early and late-appearing spleen colonies are the progeny of two distinct classes of progenitor cells.  相似文献   

12.
Infection with a recombinant murine-feline gammaretrovirus, MoFe2, or with the parent virus, Moloney murine leukemia virus, caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective, in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.  相似文献   

13.
A major problem in autologous stem cell transplantation is the occurrence of relapse by residual neoplastic cells from the graft. The selective toxicity of hyperthermia toward malignant hematopoietic progenitors compared with normal bone marrow cells has been utilized in purging protocols. The underlying mechanism for this selective toxicity has remained unclear. By using normal and leukemic cell line models, we searched for molecular mechanisms underlying this selective toxicity. We found that the differential heat sensitivity could not be explained by differences in the expression or inducibility of Hsp and also not by the overall chaperone capacity of the cells. Despite an apparent similarity in initial heat-induced damage, the leukemic cells underwent heat-induced apoptosis more readily than normal hematopoietic cells. The differences in apoptosis initiation were found at or upstream of cytochrome c release from the mitochondria. Sensitivity to staurosporine-induced apoptosis was similar in all cell lines tested, indicating that the apoptotic pathways were equally functional. The higher sensitivity to heat-induced apoptosis correlated with the level of Bcl-2 protein expression. Moreover, stable overexpression of Bcl-2 protected the most heat sensitive leukemic cells against heat-induced apoptosis. Our data indicate that leukemic cells have a specifically lower threshold for heat damage to initiate and execute apoptosis, which is due to an imbalance in the expression of the Bcl-2 family proteins in favor of the proapoptotic family members.  相似文献   

14.
Anti-apoptotic Bcl-2-family proteins (Bcl-2, Bcl-x(L), Bfl-1, Mcl-1, Bcl-W and Bcl-B) have been recently validated as drug discovery targets for cancer, owed to their ability to confer tumor resistance to chemotherapy or radiation. The anti-apoptotic activity of Bcl-2 proteins is due to their ability to heterodimerize with their pro-apoptotic counterparts (proteins such as Bad, Bim or Bid) via a conserved peptide region termed BH3. Thus, molecules that mimic pro-apoptotic BH3 domains represent a direct approach to overcoming the protective effects of anti-apoptotic proteins such as Bcl-2 and Bcl-x(L). Here, we report on the development and evaluation of two novel Lanthanide-based assays that are formatted for high-throughput screening of small molecules capable of antagonizing BH3-Bcl-2 interactions. The assay conditions, robustness and reproducibility (Z' factors) are described. These assays represent useful tools to enable further studies in the search for novel, safe and effective anti-cancer agents targeting Bcl-2-family proteins.  相似文献   

15.
Vascular endothelial growth factor (VEGF) and its receptors play an essential role in the formation and maintenance of the hematopoietic and vascular compartments. The VEGF receptor-2 (VEGFR-2) is expressed on a population of hematopoietic cells, although its role in hematopoiesis is still unclear. In this report, we have utilized a strategy to selectively activate VEGFR-2 and study its effects in primary bone marrow cells. We found that VEGFR-2 can maintain the hematopoietic progenitor population in mouse bone marrow cultured in the absence of exogenous cytokines. Maintenance of the hematopoietic progenitor population is due to increased cell survival with minimal effect on proliferation. Progenitor survival is mainly mediated by activation of the phosphatidylinositol 3'-kinase/Akt pathway. Although VEGFR-2 also activated Erk1/2 mitogen-activated protein kinase, it did not induce cell proliferation, and blockade of this pathway only partially decreased VEGFR-2-mediated survival of hematopoietic progenitors. Thus, the role of VEGFR-2 in hematopoiesis is likely to maintain survival of hematopoietic progenitors through the activation of antiapoptotic pathways.  相似文献   

16.
17.
Stromal cell-derived factor-1alpha (SDF-1alpha) is a strong migratory stimulant for hematopoietic stem and progenitor cells (HSPCs). The hematopoietic cytokines thrombopoietin (TPO), Flt3-ligand (FL), stem cell factor (SCF) and interleukin 11 (IL-11) are able to stimulate amplification of primitive murine hematopoietic stem cells (HSCs) in vitro. The effects of these cytokines on SDF-1alpha-induced migratory activity of murine Lin(-)c-kit+ HSPC were analyzed by cultivation of these cells in the presence of 12 combinations of FL, TPO, SCF and IL-11. Migratory activity was measured in a three-dimensional collagen matrix using time-lapse video microscopy. Each cytokine combination had a distinct effect on SDF-1alpha-stimulated migratory activity. For instance, FL- and SCF-cultivated cells showed a high migratory SDF-1alpha response, while cells cultivated with SCF, TPO and IL-11 did not react to SDF-1alpha stimulation with an elevated migration rate. Our data indicate that the differences in the migratory SDF-1alpha response are not related to different CXCR4 expression levels, but rather to the differential engagement of the CXCR4-dependent MAPK p42/44 and PI3K signal transduction pathways. This indicates that hematopoietic cytokines can have a significant impact on SDF-1alpha-stimulated migratory activity and the underlying intracellular signaling processes in cultivated HSPCs.  相似文献   

18.
19.
Suppression of hematopoiesis is far too often the main consequence of antineoplastic therapy, such that the developing degree of myelosuppression and/or thrombocytopenia are usually the rate-limiting steps to adjuvant therapy. This communication reports the results of studies designed to investigate the capability of lithium to accelerate in vivo hematopoietic recovery following exposure to vinblastine sulfate (VB). Male mice (144 BC3F1) received VB (4 mg/kg/b.w.) i.v. Twenty-four h following VB, 72 mice received 35 micrograms m/animal, ultra-pure lithium carbonate (Li2CO3) i.p. Another 72 mice received either VB or phosphate buffered saline as controls. Beginning 24 h later and continuing on days 2, 5, 7, 9, 12, 21 and 28, three mice from each group were randomly sacrificed and their hematological parameters analyzed. Bone marrow and splenic granulocyte-macrophage progenitor cells (CFU-gm) and megakaryocyte progenitor cells (CFU-meg) content were evaluated. Lithium was unable to prevent the onset of either neutropenia or thrombocytopenia; however, lithium was successful in restoring normal white blood cell and platelet values earlier than the VB control group, thus significantly reducing the period of drug-induced neutropenia and thrombocytopenia. This lithium-enhanced hematopoiesis was measured by an accelerated recovery in both marrow and splenic CFU-gm and CFU-meg compared to controls. These data demonstrate the efficacy of lithium to accelerate hematopoietic recovery following exposure to cytotoxic antineoplastic drugs.  相似文献   

20.
Hubel A  Norman J  Darr TB 《Cryobiology》1999,38(2):140-153
The freezing responses of hematopoietic progenitor cells isolated from normal donors and from donors with mucopolysaccharidosis type I (MPS I) were determined using cryomicroscopy and analyzed using theoretical models for water transport and intracellular ice formation. The cells from donors with MPS I used in this investigation were cultured and transduced with a retroviral vector for the alpha-l-iduronidase (IDUA) enzyme in preclinical studies for human gene therapy. The water transport and intracellular ice formation (IIF) characteristics were determined at different time points in the culture and transduction process for hematopoietic progenitor cells expressing CD34 antigen from donors with MPS I and from normal donors. There were statistically significant changes in water transport, osmotically inactive cell volume fraction, and permeability between cells from different sources (normal donors vs donors with MPSI) and different culture conditions (freshly isolated vs cultured and transduced). Specifically, Lpg and Ea increased after ex vivo culture of the cells and the changes in permeability parameters were observed after as little as 3 days in culture. Similarly, the IIF characteristics of hematopoietic progenitor cells can also be influenced by the culture and transduction process. The IIF characteristics of freshly isolated cells from donors with MPS I were statistically distinct from those of cultured and transduced cells from the same donor. The ability to cryopreserve cells which are cultured ex vivo for therapeutic purposes will require an understanding of the biophysical changes resulting from the culture conditions and the manner in which these changes influence viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号