首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
微小染色体维持(minichromosome maintenance,MCM)蛋白质家族是DNA复制前复合物的重要组成部分,在DNA复制启动过程和DNA损伤修复中发挥着重要作用.MCM蛋白质家族成员在转录调节、染色质重塑和检查点应答中也扮演着重要角色.最近研究发现,MCM异常可导致恶性肿瘤的发生发展,在不同肿瘤(前列腺癌、子宫内膜癌、卵巢癌、肝癌、肺癌、胶质母细胞瘤和髓母细胞瘤等)中呈现异常表达并与肿瘤细胞增殖、侵袭、转移能力密切相关,MCM蛋白有望作为临床上诊断相关恶性肿瘤及提示其预后的生物学标志物.更为重要的是,MCM蛋白质复合物晶体结构逐步得到解析,这不仅有利于阐明其生理和病理作用与调控机制,亦有助于发现靶向MCM的特异性小分子抑制剂,为新型抗肿瘤药物的研发提供新思路.  相似文献   

4.
5.
6.
Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2), a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK)/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.  相似文献   

7.
Endometrial cancer is the most common gynecologic malignancy in more developed countries. Approximately 75% of cases are diagnosed at an early stage with a tumor confined to the uterine corpus. Although most patients are cured by surgery alone, about 15-20% with no signs of locally advanced or metastatic disease at primary treatment recurs, with limited responsiveness to systemic therapy. The most common basis for determining the risk of recurrent disease has been classification of endometrial cancers into two subtypes. Type I, associated with a good prognosis and endometrioid histology and type II, associated with a poor prognosis and non-endometrioid histology. This review will focus primarily on the molecular biomarkers that have supported the dualistic model of endometrial carcinoma and help determine which patients would benefit from either adjuvant therapy or more aggressive primary treatment.  相似文献   

8.
KCNMA1 encodes the α-subunit of the large conductance, voltage and Ca2+-activated (BK) potassium channel and has been reported as a target gene of genomic amplification at 10q22 in prostate cancer. To investigate the prevalence of the amplification in other human cancers, the copy number of KCNMA1 was analyzed by fluorescence-in-situ-hybridization (FISH) in 2,445 tumors across 118 different tumor types. Amplification of KCNMA1 was restricted to a small but distinct fraction of breast, ovarian and endometrial cancer with the highest prevalence in invasive ductal breast cancers and serous carcinoma of ovary and endometrium (3–7%). We performed an extensive analysis on breast cancer tissue microarrays (TMA) of 1,200 tumors linked to prognosis. KCNMA1 amplification was significantly associated with high tumor stage, high grade, high tumor cell proliferation, and poor prognosis. Immunofluorescence revealed moderate or strong KCNMA1 protein expression in 8 out of 9 human breast cancers and in the breast cancer cell line MFM223. KCNMA1-function in breast cancer cell lines was confirmed by whole-cell patch clamp recordings and proliferation assays, using siRNA-knockdown, BK channel activators such as 17ß-estradiol and the BK-channel blocker paxilline. Our findings revealed that enhanced expression of KCNMA1 correlates with and contributes to high proliferation rate and malignancy of breast cancer.  相似文献   

9.

Background

Endometrial cancer is the most common gynecologic malignancy in developed countries and little is known about the underlying mechanism of stage and disease outcomes. The goal of this study was to identify differentially expressed genes (DEG) between late vs. early stage endometrioid adenocarcinoma (EAC) and uterine serous carcinoma (USC), as well as between disease outcomes in each of the two histological subtypes.

Methodology/Principal Finding

Gene expression profiles of 20 cancer samples were analyzed (EAC = 10, USC = 10) using the human genome wide illumina bead microarrays. There was little overlap in the DEG sets between late vs. early stages in EAC and USC, and there was an insignificant overlap in DEG sets between good and poor prognosis in EAC and USC. Remarkably, there was no overlap between the stage-derived DEGs and the prognosis-derived DEGs for each of the two histological subtypes. Further functional annotation of differentially expressed genes showed that the composition of enriched function terms were different among different DEG sets. Gene expression differences for selected genes of various stages and outcomes were confirmed by qRT-PCR with a high validation rate.

Conclusion

This data, although preliminary, suggests that there might be involvement of distinct groups of genes in tumor progression (late vs. early stage) in each of the EAC and USC. It also suggests that these genes are different from those involved in tumor outcome (good vs. poor prognosis). These involved genes, once clinically verified, may be important for predicting tumor progression and tumor outcome.  相似文献   

10.
The antiapoptotic, antioxidant, proliferative, and angiogenic effects of metallothionein (MT)-I+II has resulted in increased focus on their role in oncogenesis, tumor progression, therapy response, and patient prognosis. Studies have reported increased expression of MT-I+II mRNA and protein in various human cancers; such as breast, kidney, lung, nasopharynx, ovary, prostate, salivary gland, testes, urinary bladder, cervical, endometrial, skin carcinoma, melanoma, acute lymphoblastic leukemia (ALL), and pancreatic cancers, where MT-I+II expression is sometimes correlated to higher tumor grade/stage, chemotherapy/radiation resistance, and poor prognosis. However, MT-I+II are downregulated in other types of tumors (e.g. hepatocellular, gastric, colorectal, central nervous system (CNS), and thyroid cancers) where MT-I+II is either inversely correlated or unrelated to mortality. Large discrepancies exist between different tumor types, and no distinct and reliable association exists between MT-I+II expression in tumor tissues and prognosis and therapy resistance. Furthermore, a parallel has been drawn between MT-I+II expression as a potential marker for prognosis, and MT-I+II's role as oncogenic factors, without any direct evidence supporting such a parallel. This review aims at discussing the role of MT-I+II both as a prognostic marker for survival and therapy response, as well as for the hypothesized role of MT-I+II as causal oncogenes.  相似文献   

11.
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell–EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.  相似文献   

12.
Genetic instability in human mismatch repair deficient cancers   总被引:7,自引:0,他引:7  
Cancers showing microsatellite instability (MSI-H) are frequent tumors characterized by inactivating alterations of mismatch repair (MMR) genes that lead to an incapacity to recognize and repair errors that occur during DNA replication. These cancers can be inherited as in the human non-polyposis colorectal cancer syndrome, or can occur sporadically in 10-15% of colorectal, gastric and endometrial cancers. MSI-H tumors have different clinicopathological features compared to cancers without this phenotype, termed MSS, and the repertoire of genetic events involved in tumoral progression of both phenotypes is thought to be different. In MSI-H tumors, most of the genetic changes occur at both non-coding and coding microsatellites that are particularly prone to errors during replication due to their repetitive sequence. This mechanism appears to be the main "genetic pathway" by which functional changes with putative oncogenic effects are accumulated in these tumors.  相似文献   

13.
Hormonal cancers such as breast and prostate cancer arise from steroid hormone-regulated tissues. In addition to breast and prostate cancer hormonal regulation has also a role in endometrial, ovarian, testis and thyroid carcinomas. The effects of estrogens, androgens and progestagens on tumor growth are largely mediated by paracrine and autocrine target molecules which include growth factors and growth factor receptors. During cancer progression the hormonal growth regulation is often lost or overcome by an inappropriate activation of growth factor signaling cascades. One of the growth factors which have been associated with the regulation of growth and progression of hormonal cancer is fibroblast growth factor 8 (FGF8) which has also been recognized as an oncogene. FGF8 is widely expressed during embryonic development. It has been shown to mediate embryonic epithelial-mesenchymal transition and to have a crucial role in gastrulation and early organization and differentiation of midbrain/hindbrain, pharyngeal, cardiac, urogenital and limb structures. During adulthood FGF8 expression is much more restricted but in hormonal cancers it becomes frequently activated. High level of FGF8 expression in tumors is associated with a poor prognosis at least in prostate cancer. In experimental models FGF8 induces and facilitates prostate tumorigenesis and increases growth and angiogenesis of tumors. Several lines of evidence for autocrine and paracrine loops in the growth regulation of breast, prostate and ovarian cancer by FGF8 have been suggested.  相似文献   

14.
15.
Oncogenic fusion genes as the result of chromosomal rearrangements are important for understanding genome instability in cancer cells and developing useful cancer therapies. To date, the mechanisms that create such oncogenic fusion genes are poorly understood. Previously we reported an unappreciated RNA-driven mechanism in human prostate cells in which the expression of chimeric RNA induces specified gene fusions in a sequence-dependent manner. One fundamental question yet to be addressed is whether such RNA-driven gene fusion mechanism is generalizable, or rather, a special case restricted to prostate cells. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene commonly found in low-grade endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The induced fusion gene is validated both at the RNA and the genomic DNA level. The ability of designed chimeric RNAs to drive and recapitulate the formation of JAZF1-SUZ12 gene fusion in endometrial cells represents another independent case of RNA-driven gene fusion, suggesting that RNA-driven genomic recombination is a permissible mechanism in mammalian cells. The results could have fundamental implications in the role of RNA in genome stability, and provide important insight in early disease mechanisms related to the formation of cancer fusion genes.  相似文献   

16.
Brain metastases of gynecological malignancies are rare, but the incidence is increasing. Patients with brain metastases have a poor prognosis, therefore early detection and optimal management is necessary. In order to determine a new biomarker, we aimed to identify proteins that associated with brain metastases. We investigated proteins associated with brain metastases of gynecological malignancies in three patients who underwent surgical resection (stage IIb cervical cancer, stage Ib endometrial cancer, and stage IIIb ovarian cancer). Proteomic analysis was performed on formalin-fixed paraffin-embedded (FFPE) samples of the primary tumors and brain metastases, which were analyzed by liquid chromatography with tandem mass spectrometry. Thereafter, candidate proteins were identified by the Scaffold system and Mascot search program, and were analyzed using western blotting and immunohistochemistry. As a result, a total of 129 proteins were identified. In endometrial and ovarian cancers, western blotting revealed that the expression of alpha-enolase (ENO1) and triosephosphate isomerase (TPI-1) was higher and the expression of Transgelin-2 (TAGLN2) was lower in metastatic tumors than in primary tumors. On the other hand, the expression of TPI-1 and TAGLN2 was lower in metastatic tumors than in primary tumors in cervical cancer. Immunohistochemistry confirmed that ENO1 expression was elevated in the metastatic tumors compared with the primary tumors. In conclusion, the present study showed that FFPE tissue-based proteomics analysis can be powerful tool, and these findings suggested that ENO1, TPI-1, and TAGLN2 may have a role in the development and progression of brain metastasis from gynecological malignancies.  相似文献   

17.
miR-429与肿瘤     
miR-429是miR-200家族成员之一。研究表明,miR-429异常表达与肿瘤的发生、发展、转移、凋亡和耐药等密切相关。但miR-429在肿瘤中所起的作用一直有争议,可作为肿瘤抑制剂或促进剂,具肿瘤细胞/组织特异性。其在骨肉瘤、肾癌、卵巢癌、乳腺癌、宫颈癌、胶质瘤、口腔鳞状细胞癌、胃癌、食管癌、胰腺癌中起抑癌作用,而在肺癌、前列腺癌和子宫内膜癌中起促癌作用,但在结肠癌、肝癌、膀胱癌中的作用尚不明确。本文综述了近年来miR-429在肿瘤发生、发展中的作用及潜在的调控机制,为其作为肿瘤诊断、治疗及预后的潜在生物标记分子提供新的启示和参考。  相似文献   

18.
Genomic rearrangements resulting in activating kinase fusions have been increasingly described in a number of cancers including malignant melanoma, but their frequency in specific melanoma subtypes has not been reported. We used break‐apart fluorescence in situ hybridization (FISH) to identify genomic rearrangements in tissues from 59 patients with various types of malignant melanoma including acral lentiginous, mucosal, superficial spreading, and nodular. We identified four genomic rearrangements involving the genes BRAF, RET, and ROS1. Of these, three were confirmed by Immunohistochemistry (IHC) or sequencing and one was found to be an ARMC10‐BRAF fusion that has not been previously reported in melanoma. These fusions occurred in different subtypes of melanoma but all in tumors lacking known driver mutations. Our data suggest gene fusions are more common than previously thought and should be further explored particularly in melanomas lacking known driver mutations.  相似文献   

19.
Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer comparative studies investigating the contribution of all DNA repair genes in cancer progression employing an integrated approach have remained limited. We performed a multi-cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes in 16 cancer types (n = 16,225). Cox proportional hazards analyses revealed a significant variation in the number of prognostic genes between cancers; 81 genes were prognostic in clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We reasoned that genes that were commonly prognostic in highly correlated cancers revealed by Spearman’s correlation analysis could be harnessed as a molecular signature for risk assessment. A 10-gene signature, uniting prognostic genes that were common in highly correlated cancers, was significantly associated with overall survival in patients with clear cell renal cell (P < 0.0001), papillary renal cell (P = 0.0007), liver (P = 0.002), lung (P = 0.028), pancreas (P = 0.00013) or endometrial (P = 0.00063) cancers. Receiver operating characteristic analyses revealed that a combined model of the 10-gene signature and tumor staging outperformed either classifier when considered alone. Multivariate Cox regression models incorporating additional clinicopathological features showed that the signature was an independent predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent across all six cancers, patients with high 10-gene and high hypoxia scores had significantly higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional enrichment analyses revealed that high mortality rates in patients with high 10-gene scores were attributable to an overproliferation phenotype. Death risk in these patients was further exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene signature identified tumors with heightened DNA repair ability. This information has the potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with chemotherapeutic drugs.  相似文献   

20.

Background

The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation.

Methods and Findings

Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome.

Conclusions

Using an unbiased genome-wide approach, our analysis has enabled the discovery of a number of clinically significant genes targeted by multiple modes of inactivation in breast and colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for poor clinical outcome. Our data define a set of genes that are targeted by both genetic and epigenetic events, predict for clinical prognosis, and are likely fundamentally important for cancer initiation or progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号