首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang Z  Shu H  Qi W  Mahmood NA  Mumby MC  Yu H 《Developmental cell》2006,10(5):575-585
Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.  相似文献   

2.
Rivera T  Losada A 《Chromosoma》2009,118(2):223-233
Sister chromatid cohesion is mediated by cohesin. At the onset of mitosis, most cohesin dissociates from chromatin with the exception of a small population, present along chromosome arms and enriched at centromeres. A protein known as shugoshin (Sgo) is essential to maintain arm and centromeric cohesion until the onset of anaphase in transformed human cells, but not in other organisms like Drosophila or mouse. We have used Xenopus egg extracts to further explore this issue. Chromosomes assembled in extracts depleted of Sgo have little or no cohesin at centromeres and display centromeric cohesion defects. Unlike transformed human cells, however, arm cohesion is maintained in the absence of Sgo. Furthermore, Sgo depletion impairs the prophase dissociation of cohesin. This phenotype can be rescued by inhibition of PP2A. The protein phosphatase interacts with Sgo and accumulates at centromeres in mitosis in a Sgo-dependent manner. We propose that Sgo drives relocalization of PP2A from arms to centromeres and, in this way, coordinates release of arm cohesin with protection of centromeric cohesin in mitosis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.  相似文献   

4.
Shugoshin (Sgo) proteins constitute a conserved protein family defined as centromeric protectors of Rec8-containing cohesin complexes in meiosis . In vertebrate mitosis, Scc1/Rad21-containing cohesin complexes are also protected at centromeres because arm cohesin, but not centromeric cohesin, is largely dissociated in pro- and prometaphase . The dissociation process is dependent on the activity of polo-like kinase (Plk1) and partly dependent on Aurora B . Recently, it has been demonstrated that vertebrate shugoshin is required for preserving centromeric cohesion during mitosis ; however, it was not addressed whether human shugoshin protects cohesin itself. Here, we show that the persistence of human Scc1 at centromeres in mitosis is indeed dependent on human Sgo1. In fission yeast, Sgo localization depends on Bub1, a conserved spindle checkpoint protein, which is enigmatically also required for chromosome congression during prometaphase in vertebrate cells. We demonstrate that human Sgo1 fails to localize at centromeres in Bub1-repressed cells, and centromeric cohesion is significantly loosened. Remarkably, in these cells, Sgo1 relocates to chromosomes all along their length and provokes ectopic protection from dissociation of Scc1 on chromosome arms. These results reveal a hitherto concealed role for human Bub1 in defining the persistent cohesion site of mitotic chromosomes.  相似文献   

5.
Sister chromatid cohesion mediated by the ring-shaped cohesin complex is essential for faithful chromosome segregation. A tight spatial and temporal control of cohesin release is observed in mitosis and meiosis, and a family of proteins known as shugoshins play a major role in this process. Shugoshin (Sgo) protects centromeric cohesin from dissociation in early mitosis and from cleavage by separase in meiosis I. Three exciting new reports indicate that this is accomplished by recruiting the serine/threonine protein phosphatase 2A (PP2A) to centromeres.((1-3)) The proposed targets of PP2A activity include cohesin and Sgo, both of which would otherwise dissociate from chromosomes upon phosphorylation by Polo kinase. Thus, a balance of kinase and phosphatase activities seems to be the key to the conserved mechanism that regulates the stepwise release of cohesin from mitotic and meiotic chromosomes. Additional evidence, however, suggests that this is only part of the story, and that Sgo has also a role independent of PP2A.  相似文献   

6.
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1-INCENP and HP1-Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres.  相似文献   

7.
Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.  相似文献   

8.
Meiosis consists of a single round of DNA replication followed by two consecutive nuclear divisions. During the first division (MI), sister kinetochores must orient toward the same pole to favor reductional segregation. Correct chromosome segregation during the second division (MII) requires the retention of centromeric cohesion until anaphase II. The spindle checkpoint protein Bub1 is essential for both processes in fission yeast . When bub1 is deleted, the Shugoshin protein Sgo1 is not recruited to centromeres, cohesin Rec8 does not persist at centromeres, and sister-chromatid cohesion is lost by the end of MI. Deletion of bub1 also affects kinetochore orientation because sister centromeres can move to opposite spindle poles in approximately 30% of MI divisions. We show here that these two functions are separable within the Bub1 protein. The N terminus of Bub1 is necessary and sufficient for Sgo1 targeting to centromeres and the protection of cohesion, whereas the C-terminal kinase domain acts together with Sgo2, the second fission-yeast Shugoshin protein, to promote sister-kinetochore co-orientation during MI. Additional analyses suggest that the protection of centromeric cohesion does not operate when sister kinetochores attach to opposite spindle poles during MI. Sgo1-mediated protection of centromere cohesion might therefore be regulated by the mode of kinetochore attachment.  相似文献   

9.
BACKGROUND: Meiosis produces haploid gametes from diploid progenitor cells. This reduction is achieved by two successive nuclear divisions after one round of DNA replication. Correct chromosome segregation during the first division depends on sister kinetochores being oriented toward the same spindle pole while homologous kinetochores must face opposite poles. Segregation during the second division depends on retention of sister chromatid cohesion between centromeres until the onset of anaphase II, which in Drosophila melanogaster depends on a protein called Mei-S332 that binds to centromeres. RESULTS: We report the identification of two homologs of Mei-S332 in fission yeast using a knockout screen. Together with their fly ortholog they define a protein family conserved from fungi to mammals. The two identified genes, sgo1 and sgo2, are required for retention of sister centromere cohesion between meiotic divisions and kinetochore orientation during meiosis I, respectively. The amount of meiotic cohesin's Rec8 subunit retained at centromeres after meiosis I is reduced in Deltasgo1, but not in Deltasgo2, cells, and Sgo1 appears to regulate cleavage of Rec8 by separase. Both Sgo1 and Sgo2 proteins localize to centromere regions. The abundance of Sgo1 protein normally declines after the first meiotic division, but extending its expression by altering its 3'UTR sequences does not greatly affect meiosis II. Its mere presence within the cell might therefore be insufficient to protect centromeric cohesion. CONCLUSIONS: A conserved protein family based on Mei-S332 has been identified. The two fission yeast homologs are implicated in meiosis I kinetochore orientation and retention of centromeric sister chromatid cohesion until meiosis II.  相似文献   

10.
《Reproductive biology》2022,22(3):100668
SET is a multifunctional protein involved in a variety of molecular processes such as cell apoptosis and cell-cycle regulation. In ovaries SET is predominantly expressed in theca cells and oocytes. In polycystic ovary syndrome (PCOS) patients the expression of SET was increased than healthy people. The current study was designed to determine whether SET plays a role in oocyte maturation and apoptosis, which may provide clues for the underlying pathological mechanism of follicular development in PCOS patients. Oocytes at germinal vesicle (GV) stage were collected from 6-week-old female ICR mice ovaries. The expression of SET was manipulated by AdCMV-SET and AdH1-SiRNA/SET adenoviruses. SET overexpression improved oocyte maturation whereas SET knockdown inhibited oocyte maturation. Moreover, SET negatively regulated serine/threonine protein phosphatase 2A (PP2A) activity in oocytes. Treatment with PP2A inhibitor okadaic acid (OA) promoted oocyte maturation. Furthermore, PP2A knockdown confirmed the role of PP2A in oocyte maturation, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition on oocyte maturation. The central role of PP2A in SET-mediated regulation of oocyte maturation was confirmed by the finding that SET increased the expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) and PP2A inhibited their expressions. Besides, SET inhibited oocyte apoptosis through decreasing the expression of caspase 3 and caspases 8, while PP2A had no effect on oocyte apoptosis. SET promoted oocyte maturation by inhibiting PP2A activity and inhibited oocyte apoptosis in mouse in-vitro cultured oocytes, which may provide a pathologic pathway leading to impaired oocyte developmental competence in PCOS.  相似文献   

11.
Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.  相似文献   

12.
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to “deprotect” Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.  相似文献   

13.
SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 μM tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.  相似文献   

14.
During mitosis, the inner centromeric region (ICR) recruits protein complexes that regulate sister chromatid cohesion, monitor tension, and modulate microtubule attachment. Biochemical pathways that govern formation of the inner centromere remain elusive. The kinetochore protein Bub1 was shown to promote assembly of the outer kinetochore components, such as BubR1 and CENP-F, on centromeres. Bub1 was also implicated in targeting of Shugoshin (Sgo) to the ICR. We show that Bub1 works as a master organizer of the ICR. Depletion of Bub1 from Xenopus laevis egg extract or from HeLa cells resulted in both destabilization and displacement of chromosomal passenger complex (CPC) from the ICR. Moreover, soluble Bub1 controls the binding of Sgo to chromatin, whereas the CPC restricts loading of Sgo specifically onto centromeres. We further provide evidence that Bub1 kinase activity is pivotal for recruitment of all of these components. Together, our findings demonstrate that Bub1 acts at multiple points to assure the correct kinetochore formation.  相似文献   

15.
Shugoshin 1 (Sgo1) functions as a protector of centromeric cohesion of sister chromatids in higher eukaryotes. Here, we provide evidence for a previously unrecognized role for Sgo1 in centriole cohesion. Sgo1 depletion via RNA interference induces the formation of multiple centrosome-like structures in mitotic cells that result from the separation of paired centrioles. Sgo1+/- mitotic murine embryonic fibroblasts display split centrosomes. Localization study of two major endogenous splice variants of Sgo1 indicates that the smaller variant, sSgo1, is found at the centrosome in interphase and at spindle poles in mitosis. sSgo1 interacts with Plk1 and its spindle pole localization is Plk1 dependent. Centriole splitting induced by Sgo1 depletion or expression of a dominant negative mutant is suppressed by ectopic expression of sSgo1 or by Plk1 knockdown. Our studies strongly suggest that sSgo1 plays an essential role in protecting centriole cohesion, which is partly regulated by Plk1.  相似文献   

16.
Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion in early mitosis and, thus, prevents premature sister-chromatid separation. The protein level of Sgo1 is regulated during the cell cycle; it peaks in mitosis and is down-regulated in G1/S. Here we show that Sgo1 is degraded during the exit from mitosis, and its degradation depends on the anaphase-promoting complex/cyclosome (APC/C). Overexpression of Cdh1 reduces the protein levels of ectopically expressed Sgo1 in human cells. Sgo1 is ubiquitinated by APC/C bound to Cdh1 (APC/CCdh1) in vitro. We have further identified two functional degradation motifs in Sgo1; that is, a KEN (Lys-Glu-Asn) box and a destruction box (D box). Although removal of either motif is not sufficient to stabilize Sgo1, Sgo1 with both KEN box and D box deleted is stable in cells. Surprisingly, mitosis progresses normally in the presence of non-degradable Sgo1, indicating that degradation of Sgo1 is not required for sister-chromatid separation or mitotic exit. Finally, we show that the spindle checkpoint kinase Bub1 contributes to the maintenance of Sgo1 steady-state protein levels in an APC/C-independent mechanism.Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs in two steps in vertebrate cells (1-3). In prophase, cohesin is phosphorylated by mitotic kinases including Plk1 and removed from chromosome arms (1, 4). Then, cleavage of centromeric cohesin by separase takes place at the metaphase-to-anaphase transition to allow sister-chromatid separation (5). The shugoshin (Sgo) family of proteins plays an important role in the protection of centromeric cohesion (6, 7). Human cells depleted of Sgo1 by RNAi undergo massive chromosome missegregation (8-11). In cells with compromised Sgo1 function, centromeric cohesin is improperly phosphorylated and removed (4, 11), resulting in premature sister-chromatid separation. It has been shown recently that Sgo1 collaborates with PP2A to counteract the action of Plk1 and other mitotic kinases and to protect centromeric cohesin from premature removal (12-14). In addition, Sgo1 has also been shown to promote stable kinetochore-microtubule attachment and sense tension across sister kinetochores (8, 15). Thus, Sgo1 is crucial for mitotic progression and chromosome segregation.Orderly progression through mitosis is regulated by the anaphase-promoting complex/cyclosome (APC/C),2 a large multiprotein ubiquitin ligase that targets key mitotic regulators for destruction by the proteasome (16). APC/C selects substrates for ubiquitination by using the Cdc20 or Cdh1 activator proteins to recognize specific sequences called APC/C degrons within target proteins (17). Several APC/C degrons have been characterized, including the destruction box (D box) and the Lys-Glu-Asn box (KEN box) (18, 19). The D box, with the consensus amino acid sequence of RXXLXXXN(X indicates any amino acid), are found in many APC/C substrates, including mitotic cyclins and are essential for their ubiquitin-mediated destruction. The KEN box, which contains a consensus KEN motif, is also found in several APC/C substrates and is preferentially but not exclusively recognized by APC/CCdh1. When APC/C is active, it directs progression through and exit from mitosis by catalyzing the ubiquitination and timely destruction of mitotic regulators, including cyclin A, cyclin B, and the separase inhibitor securin (16). The APC/C activity needs to be tightly controlled to prevent unscheduled substrate degradation. An important mechanism for APC/C regulation is the spindle checkpoint, which prevents the activation of APC/C and destruction of its substrates in response to kinetochores that have not properly attached to the mitotic spindle (20).Recent evidence shows that Sgo1 is a substrate of APC/C, and its protein levels oscillate during the cell cycle (8, 9). In this article we study the degradation of Sgo1 in human cells. We show that Sgo1 is degraded during mitotic exit, and this degradation depends on APC/CCdh1. We further show that both KEN and D boxes are required for Sgo1 degradation in vivo and ubiquitination in vitro. Removal of these motifs stabilizes Sgo1 in vivo. The prolonged presence of stable Sgo1 protein in human cells does not change the kinetics of chromosome segregation and mitotic exit. Therefore, a timely scheduled degradation of Sgo1 takes place but is not required for mitotic exit. Finally, we show that Bub1 regulates Sgo1 protein levels through a mechanism that does not involve APC/C-mediated degradation.  相似文献   

17.
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.  相似文献   

18.
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.  相似文献   

19.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

20.
The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B-independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B-mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号