首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Chronic ultraviolet (UV) exposure is a major environmental factor involved in extrinsic skin ageing (photo‐ageing). Skin nerve fibres are significantly reduced in number following UV irradiation and new skincare compounds with neuroprotective effects are thus highly warranted. Objectives: We developed a new skincare formulation from a plant extract and evaluated its neuroprotective effects of ex vivo UV irradiation. Materials and methods: The new skincare emulsion was formulated from Echinacea purpurea extract and was enriched with antioxidants (patent no. PROV020110087075). Skin samples were obtained from 20 healthy patients enrolled for plastic surgery and were immediately treated with placebo (SPF 15) or test emulsions. Skin samples were exposed to UVA and UVB for 60 min. Nerve fibres were identified by immunofluorescence using a monoclonal antibody, anti‐human CD56. Cell damage was quantified by image analysis. Results: UVA and UVB significantly reduced (40–60%) densities of nerve endings in control samples treated with placebo (P < 0.001). Samples treated with test emulsion completely blocked UV‐related effects on skin nerve endings. These neuroprotective effects were similarly observed regardless of age or tissue analysed (breast versus abdomen). Conclusions: Our new skincare formulation obtained from E. purpurea provides important neuroprotective effects of UV irradiation and could be used together with SPFs to prevent chronic deleterious effects of solar exposure.  相似文献   

2.
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.  相似文献   

3.
Abstract

Microalgae are a dynamic biological resource with various biotechnological applications. During recent times, the scope of this application has expanded to include: nutritional health foods, pharmaceuticals, agricultural and industrial products, environmental remediation and bioenergy production. At the same time, the methods and technologies to bioprocess microalgae for the intended applications have also evolved. However, there are still significant developments needed to reach the full potential of microalgae. The presented review discusses current methodologies to improve the effectiveness of algal feedstocks by bioprocessing them innovatively with cost-effective and environmentally sustainable techniques for their applications in therapeutics and bioresource management. The first section discusses the diversity of microalgae and its applications. In following sections, bioprocessing microalgae for their applications in therapeutics focusing on the efficacy of algae-mediated metallic nanoparticles against microbial infections and cancer is discussed. In addition, a discussion on bioresource management to produce value-added products for bioenergy and bioresource conservation elaborated the potential of microalgae as a biological reservoir to resolve the energy crisis for the modern world.  相似文献   

4.
Summary Microalgae are a highly diverse group of unicellular organisms comprising the eukaryotic protists and the prokaryotic cyanobacteria or blue-green algae. The microalgae have a unique environmental status; being virtually ubiquitous in euphotic aquatic niches, they can occupy extreme habitats ranging from tropical coral reefs to the polar regions, and they contribute to half of the globe’s photosynthetic activity. Furthermore, they form the basis of the food chain for more than 70% of the world’s biomass. Microalgae are a valuable environmental and biotechnological resource, and the aim of this review is to explore the use of in vitro technologies in the conservation and sustainable exploitation of this remarkable group of organisms. The first part of the review evaluates the importance of in vitro methods in the maintenance and conservation of microalgae and describes the central role of culture collections in applied algal research. The second part explores the application of microalgal in vitro technologies, particularly in the context of the aquaculture and biotechnology industries. Emphasis is placed upon the exploitation of economically important algal products including aquaculture feed, biomass production for the health care sector, green fertilizers, pigments, vitamins, antioxidants, and antimicrobial agents. The contribution that microalgae can make to environmental research is also appraised; for example, they have an important role as indicator organisms in environmental impact assessments. Similarly, designated culture collection strains of microalgae are used for ecotoxicity testing. Throughout the review, emphasis is placed on the application of in vitro techniques for the continued advancement of microalgal research. The paper concludes by assessing future perspectives for the novel application of microalgae and their products.  相似文献   

5.
Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.  相似文献   

6.
Culturing of microalgae as an alternative feedstock for biofuel production has received a lot of attention in recent years due to their fast growth rate and ability to accumulate high quantity of lipid and carbohydrate inside their cells for biodiesel and bioethanol production, respectively. In addition, this superior feedstock offers several environmental benefits, such as effective land utilization, CO(2) sequestration, self-purification if coupled with wastewater treatment and does not trigger food versus fuel feud. Despite having all these 'theoretical' advantages, review on problems and issues related to energy balance in microalgae biofuel are not clearly addressed until now. Base on the maturity of current technology, the true potential of microalgae biofuel towards energy security and its feasibility for commercialization are still questionable. Thus, this review is aimed to depict the practical problems that are facing the microalgae biofuel industry, covering upstream to downstream activities by accessing the latest research reports and critical data analysis. Apart from that, several interlink solutions to the problems will be suggested with the purpose to bring current microalgae biofuel research into a new dimension and consequently, to revolutionize the entire microalgae biofuel industry towards long-term sustainability.  相似文献   

7.
Microalgae-mediated chemicals production and wastes removal   总被引:7,自引:0,他引:7  
Biotechnology of microalgae has gained importance in recent years due to the development of new production and environmental technologies. Because their growth requires unexpensive substrates such as solar light and CO2, microalgae can be used as cheap and effective biocatalysts to obtain high added-value compounds, from simple metabolites to complex molecules, i.e., chemicals, vitamins, carotenoids, pigments, or polysaccharides. During productive processes, the algal biomass formed may be used as a food source like proteins. On the other hand, microalgae can also be employed in contaminant bioelimination processes especially for nitrogen, phosphorus, or sulfur compounds. Particularly relevant is their use for heavy metal removal from wastewaters; upon enriching the biomass in the metal, they can be recovered, thereby providing economic advantages.

The use of immobilized microalgae in these processes is very adequate and offers significant advantages in bioreactors.  相似文献   


8.
The problem of climate change arising mainly from CO2 emission is currently a critical environmental issue. Biofixation using microalgae has recently become an attractive approach to CO2 capture and recycling with additional benefits of downstream utilization and applications of the resulting microalgal biomass. This review summarizes the history and strategies of microalgal mitigation of CO2 emissions, photobioreactor systems used to cultivate microalgae for CO2 fixation, current microalgae harvesting methods, as well as applications of valuable by-products. It is of importance to select appropriate microalgal species to achieve an efficient and economically feasible CO2-emission mitigation process. The desired microalgae species should have a high growth rate, high CO2 fixation ability, low contamination risk, low operation cost, be easy to harvest and rich in valuable components in their biomass.  相似文献   

9.
The problem of climate change arising mainly from CO? emission is currently a critical environmental issue. Biofixation using microalgae has recently become an attractive approach to CO? capture and recycling with additional benefits of downstream utilization and applications of the resulting microalgal biomass. This review summarizes the history and strategies of microalgal mitigation of CO? emissions, photobioreactor systems used to cultivate microalgae for CO? fixation, current microalgae harvesting methods, as well as applications of valuable by-products. It is of importance to select appropriate microalgal species to achieve an efficient and economically feasible CO?-emission mitigation process. The desired microalgae species should have a high growth rate, high CO? fixation ability, low contamination risk, low operation cost, be easy to harvest and rich in valuable components in their biomass.  相似文献   

10.
11.
Ultraviolet B (UVB) (290–320 nm) is the foremost cause of photoaging, sunburn, wrinkles and skin cancer. Photoprotection against harmful UVB radiation is essential through various means including the use of skincare products. The seaweed polysaccharide carrageenan is widely used as an excipient in cosmetics and skincare products. However, its effects on normal skin keratinocytes or potential use as a photoprotective agent have yet to be established. The primary aim of this study was to assess the cytotoxic, photoprotective and antioxdative effects of carrageenan in UVB-induced immortalised normal human keratinocytes (HaCaT cells). Results showed that the percentage of cell viability decreased linearly with increasing UVB doses from 10, 50, 100, 222 to 1,000 mJ cm?2. Four isomers of carrageenan, namely iota 2 [ι (??)], iota 5 [ι (V)], lambda (λ) and kappa (κ) carrageenan were used in this study. Vitamin E was used as a positive control. In terms of cytotoxicity, the CD50 of kappa carrageenan was ~200 μg mL?1 while for the other isomers, the values ranged from 122 to 162 μg mL?1. Carrageenan showed significant protection against detrimental effects of UVB-induced cell killing and reactive oxygen species (ROS) release based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 2′,7′-dichlorfluorescein-diacetate (DCFH-DA) assays, respectively. Carrageenan was also able to quench 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. The ability to protect against UVB suggests that carrageenan has potential application as a photoprotective agent in addition to just being used as an excipient.  相似文献   

12.
微藻去除重金属镉的抗性机理研究进展   总被引:1,自引:1,他引:1  
与水体中重金属去除的传统方法相比,生物吸附法是一种更具经济效益和环境效益的技术。微藻由于自身的廉价性和高吸附性已成为高效生物吸附剂的材料来源。要评价微藻在镉(Cd)去除方面的应用潜力,解析微藻抗重金属的机理是必要条件。因此,本文从抗Cd微藻种类,Cd对微藻光合作用、生长及结构的影响,胞外吸附的机理,胞内积累的机理,以及基因调控水平,阐述了目前微藻抗Cd的研究进展,以期为后续的研究提供理论帮助。  相似文献   

13.
The ocean quahog, Arctica islandica is not just the longest living bivalve, it is also the longest lived, non-colonial animal known to science. With the maximum life span potential ever increasing and currently standing in excess of 400 years the clam has recently gained interest as a potential model organism for ageing research. This review details what is known about the biology of A. islandica, it discusses observed age-associated changes and reviews previous ageing research undertaken on the species and other long-lived bivalves which may be applicable to future ageing research and discusses future directions for ageing research with A. islandica. Historically much of the research on bivalves has been targeted at their utilization as a food source, environmental sentinels and more recently the use of their shells as archives of environmental change. The result of this has been an abundance of knowledge on bivalve life strategies, and a limited amount of information on the physiological changes in the cells and tissues of bivalves during the ageing process. However, research into the mechanisms of senescence of long-lived bivalves from a biogerontological perspective has advanced only recently. The research undertaken thus far has documented age-related differences in anti-oxidant defences and accumulation of oxidative products but despite the recent attention into ageing of A. islandica it is still to be ascertained if the species experiences senescence. Future directions for ageing research using A. islandica are discussed.  相似文献   

14.
Microalgae are regarded as a potential biomass source for biofuel purposes. With regard to bioethanol production, microalgae seem to overcome traditional substrate drawbacks. Enzymatic activities are responsible for carbon allocation and hence for carbohydrate profiles. Enzyme activities may be manipulated by metabolic engineering; however, this goal may also be achieved by controlling environmental conditions of the culture system. We outline the key-enzymes as well as the main operational conditions applied to microalgae growth (inorganic nutrient supplementation, irradiance and temperature) that affect carbohydrate synthesis on microalgae and cyanobacteria. Normally, harsh conditions are needed for such a goal and thus, arrested microalgae growth may occur. Potential strategies to avoid arrested growth, while enhancing carbohydrate accumulation, were also pointed out in this review.  相似文献   

15.
Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 1) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical.  相似文献   

16.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

17.
Extremophilic microalgae are primary producers in acidic habitats, such as volcanic sites and acid mine drainages, and play a central role in biogeochemical cycles. Yet, basic knowledge about their species composition and community assembly is lacking. Here, we begin to fill this knowledge gap by performing the first large‐scale survey of microalgal diversity in acidic geothermal sites across the West Pacific Island Chain. We collected 72 environmental samples in 12 geothermal sites, measured temperature and pH, and performed rbcL amplicon‐based 454 pyrosequencing. Using these data, we estimated the diversity of microalgal species, and then examined the relative contribution of contemporary selection (i.e., local environmental variables) and dispersal limitation on the assembly of these communities. A species delimitation analysis uncovered seven major microalgae (four red, two green, and one diatom) and higher species diversity than previously appreciated. A distance‐based redundancy analysis with variation partitioning revealed that dispersal limitation has a greater influence on the community assembly of microalgae than contemporary selection. Consistent with this finding, community similarity among the sampled sites decayed more quickly over geographical distance than differences in environmental factors. Our work paves the way for future studies to understand the ecology and biogeography of microalgae in extreme habitats.  相似文献   

18.
19.
20.
Hydra is emerging as a model organism for studies of ageing in early metazoan animals, but reef corals offer an equally ancient evolutionary perspective as well as several advantages, not least being the hard exoskeleton which provides a rich fossil record as well as a record of growth and means of ageing of individual coral polyps. Reef corals are also widely regarded as potentially immortal at the level of the asexual lineage and are assumed not to undergo an intrinsic ageing process. However, putative molecular indicators of ageing have recently been detected in reef corals. While many of the large massive coral species attain considerable ages (>600 years) there are other much shorter‐lived species where older members of some populations show catastrophic mortality, compared to juveniles, under environmental stress. Other studies suggestive of ageing include those demonstrating decreased reproduction, increased susceptibility to oxidative stress and disease, reduced regeneration potential and declining growth rate in mature colonies. This review aims to promote interest and research in reef coral ageing, both as a useful model for the early evolution of ageing and as a factor in studies of ecological impacts on reef systems in light of the enhanced effects of environmental stress on ageing in other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号