首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.  相似文献   

2.
Actin polymerization plays a critical role in clathrin-mediated endocytosis in many cell types, but how polymerization is regulated is not known. Hip1R may negatively regulate actin assembly during endocytosis because its depletion increases actin assembly at endocytic sites. Here, we show that the C-terminal proline-rich domain of Hip1R binds to the SH3 domain of cortactin, a protein that binds to dynamin, actin filaments and the Arp2/3 complex. We demonstrate that Hip1R deleted for the cortactin-binding site loses its ability to rescue fully the formation of abnormal actin structures at endocytic sites induced by Hip1R siRNA. To determine when this complex might function during endocytosis, we performed live cell imaging. The maximum in vivo recruitment of Hip1R, clathrin and cortactin to endocytic sites was coincident, and all three proteins disappeared together upon formation of a clathrin-coated vesicle. Finally, we showed that Hip1R inhibits actin assembly by forming a complex with cortactin that blocks actin filament barbed end elongation.  相似文献   

3.
Myosin 1E (Myo1E) is recruited to sites of clathrin-mediated endocytosis coincident with a burst of actin assembly. The recruitment dynamics and lifetime of Myo1E are similar to those of tagged actin polymerization regulatory proteins. Like inhibition of actin assembly, depletion of Myo1E causes reduced transferrin endocytosis and a significant delay in transferrin trafficking to perinuclear compartments, demonstrating an integral role for Myo1E in these actin-mediated steps. Mistargeting of GFP-Myo1E or its src-homology 3 domain to mitochondria results in appearance of WIP, WIRE, N-WASP, and actin filaments at the mitochondria, providing evidence for Myo1E's role in actin assembly regulation. These results suggest for mammalian cells, similar to budding yeast, interdependence in the recruitment of type I myosins, WIP/WIRE, and N-WASP to endocytic sites for Arp2/3 complex activation to assemble F-actin as endocytic vesicles are being formed.  相似文献   

4.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

5.
During clathrin‐mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G‐actin) and a central‐acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3‐dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G‐actin‐binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G‐actin‐binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two‐hybrid system, GST‐pulldown, fluorescence polarization and pyrene‐actin polymerization assays, we show that LGM binds G‐actin and is necessary for normal Arp2/3‐mediated actin polymerization in vitro. Live‐cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G‐actin‐binding motif, WH2. These results establish a second G‐actin‐binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME.   相似文献   

6.
Clathrin-mediated transport is a major pathway for endocytosis. However, in yeast, where cortical actin patches are essential for endocytosis, plasma membrane-associated clathrin has never been observed. Using live cell imaging, we demonstrate cortical clathrin in association with the actin-based endocytic machinery in yeast. Fluorescently tagged clathrin is found in highly mobile internal trans-Golgi/endosomal structures and in smaller cortical patches. Total internal reflection fluorescence microscopy showed that cortical patches are likely endocytic sites, as clathrin is recruited prior to a burst of intensity of the actin patch/endocytic marker, Abp1. Clathrin also accumulates at the cortex with internalizing alpha factor receptor, Ste2p. Cortical clathrin localizes with epsins Ent1/2p and AP180s, and its recruitment to the surface is dependent upon these adaptors. In contrast, Sla2p, End3p, Pan1p, and a dynamic actin cytoskeleton are not required for clathrin assembly or exchange but are required for the mobility, maturation, and/or turnover of clathrin-containing endocytic structures.  相似文献   

7.
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane.  相似文献   

8.
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.  相似文献   

9.
Actin polymerization essential for endocytic internalization in budding yeast is controlled by four nucleation promoting factors (NPFs) that each exhibits a unique dynamic behavior at endocytic sites. How each NPF functions and is regulated to restrict actin assembly to late stages of endocytic internalization is not known. Quantitative analysis of NPF biochemical activities, and genetic analysis of recruitment and regulatory mechanisms, defined a linear pathway in which protein composition changes at endocytic sites control actin assembly and function. We show that yeast WASP initiates actin assembly at endocytic sites and that this assembly and the recruitment of a yeast WIP-like protein by WASP recruit a type I myosin with both NPF and motor activities. Importantly, type I myosin motor and NPF activities are separable, and both contribute to endocytic coat inward movement, which likely represents membrane invagination. These results reveal a mechanism in which actin nucleation and myosin motor activity cooperate to promote endocytic internalization.  相似文献   

10.
11.
Ayscough KR 《Protoplasma》2005,226(1-2):81-88
Summary. Endocytosis is an essential eukaryotic process that, in many systems, has been reported to require a functional actin cytoskeleton. The process of endocytosis is critical for controlling the protein–lipid composition of the plasma membrane and uptake of nutrients as well as pathogens and also plays an important role in regulation of cell signalling. While several distinct pathways for endocytosis have been characterised, all of these require remodelling of the cell cortex. The importance of a dynamic actin cytoskeleton for facilitating endocytosis has been recognised for many years in budding yeast and is increasingly supported by studies in mammalian cells. Current evidence suggests that cortical patches are sites of endocytosis in Saccharomyces cerevisiae and that these sites are composed of sequentially forming protein complexes. Distinct stages in complex formation are characterised by the presence of different activators of F-actin polymerisation. Disassembly of the complexes is also essential for the endocytosis to proceed. Mutants lacking the kinases Ark1 and Prk1 accumulate actin and endocytic machinery in a single large clump in cells. Phosphorylation of endocytic proteins including Sla1p is proposed to cause their removal from the complex and allow later stages of the invagination process to occur. Dephosphorylation of endocytic components may then allow subsequent reincorporation into new sites of endocytic complex assembly. Correspondence and reprints: Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.  相似文献   

12.
During clathrin‐mediated endocytosis, adaptor proteins play central roles in coordinating the assembly of clathrin coats and cargo selection. Here we characterize the binding of the yeast endocytic adaptor Sla1p to clathrin through a variant clathrin‐binding motif that is negatively regulated by the Sla1p SHD2 domain. The crystal structure of SHD2 identifies the domain as a sterile α‐motif (SAM) domain and shows a propensity to oligomerize. By co‐immunoprecipitation, Sla1p binds to clathrin and self‐associates in vivo. Mutations in the clathrin‐binding motif that abolish clathrin binding and structure‐based mutations in SHD2 that impede self‐association result in endocytosis defects and altered dynamics of Sla1p assembly at the sites of endocytosis. These results define a novel mechanism for negative regulation of clathrin binding by an adaptor and suggest a role for SAM domains in clathrin‐mediated endocytosis.  相似文献   

13.
During clathrin-mediated endocytosis, branched actin polymerization nucleated by the Arp2/3 complex provides force needed to drive vesicle internalization. Las17 (yeast WASp) is the strongest activator of the Arp2/3 complex in yeast cells; it is not autoinhibited and arrives to endocytic sites 20 s before actin polymerization begins. It is unclear how Las17 is kept inactive for 20 s at endocytic sites, thus restricting actin polymerization to late stages of endocytosis. In this paper, we demonstrate that Las17 is part of a large and biochemically stable complex with Sla1, a clathrin adaptor that inhibits Las17 activity. The interaction is direct, multivalent, and strong, and was mapped to novel Las17 polyproline motifs that are simultaneously class I and class II. In vitro pyrene-actin polymerization assays established that Sla1 inhibition of Las17 activity depends on the class I/II Las17 polyproline motifs and is based on competition between Sla1 and monomeric actin for binding to Las17. Furthermore, live-cell imaging showed the interaction with Sla1 is important for normal Las17 recruitment to endocytic sites, inhibition during the initial 20 s, and efficient endocytosis. These results advance our understanding of the regulation of actin polymerization in endocytosis.  相似文献   

14.
Arp2/3 complex nucleates branched actin filaments that drive processes like endocytosis and lamellipodial protrusion. WISH/DIP/SPIN90 (WDS) proteins form a class of Arp2/3 complex activators or nucleation promoting factors (NPFs) that, unlike WASP family NPFs, activate Arp2/3 complex without requiring preformed actin filaments. Therefore, activation of Arp2/3 complex by WDS proteins is thought to produce the initial actin filaments that seed branching nucleation by WASP-bound Arp2/3 complexes. However, whether activation of Arp2/3 complex by WDS proteins is important for the initiation of branched actin assembly in cells has not been directly tested. Here, we used structure-based point mutations of the Schizosaccharomyces pombe WDS protein Dip1 to test the importance of its Arp2/3-activating activity in cells. Six of thirteen Dip1 mutants caused severe defects in Arp2/3 complex activation in vitro, and we found a strong correlation between the ability of mutants to activate Arp2/3 complex and to rescue endocytic actin assembly defects caused by deleting Dip1. These data support a model in which Dip1 activates Arp2/3 complex to produce actin filaments that initiate branched actin assembly at endocytic sites. Dip1 mutants that synergized with WASP in activating Arp2/3 complex in vitro showed milder defects in cells compared to those that did not, suggesting that in cells the two NPFs may coactivate Arp2/3 complex to initiate actin assembly. Finally, the mutational data reveal important complementary electrostatic contacts at the Dip1–Arp2/3 complex interface and corroborate the previously proposed wedge model, which describes how Dip1 binding triggers structural changes that activate Arp2/3 complex.  相似文献   

15.
Clathrin-mediated endocytosis (CME) is facilitated by a precisely regulated burst of actin assembly. PtdIns(4,5)P2 is an important signaling lipid with conserved roles in CME and actin assembly regulation. Rhomboid family multipass transmembrane proteins regulate diverse cellular processes; however, rhomboid-mediated CME regulation has not been described. We report that yeast lacking the rhomboid protein Rbd2 exhibit accelerated endocytic-site dynamics and premature actin assembly during CME through a PtdIns(4,5)P2-dependent mechanism. Combined genetic and biochemical studies showed that the cytoplasmic tail of Rbd2 binds directly to PtdIns(4,5)P2 and is sufficient for Rbd2''s role in actin regulation. Analysis of an Rbd2 mutant with diminished PtdIns(4,5)P2-binding capacity indicates that this interaction is necessary for the temporal regulation of actin assembly during CME. The cytoplasmic tail of Rbd2 appears to modulate PtdIns(4,5)P2 distribution on the cell cortex. The syndapin-like F-BAR protein Bzz1 functions in a pathway with Rbd2 to control the timing of type 1 myosin recruitment and actin polymerization onset during CME. This work reveals that the previously unstudied rhomboid protein Rbd2 functions in vivo at the nexus of three highly conserved processes: lipid regulation, endocytic regulation, and cytoskeletal function.  相似文献   

16.
We used the dendritic nucleation hypothesis to formulate a mathematical model of the assembly and disassembly of actin filaments at sites of clathrin-mediated endocytosis in fission yeast. We used the wave of active WASp recruitment at the site of the patch formation to drive assembly reactions after activation of Arp2/3 complex. Capping terminated actin filament elongation. Aging of the filaments by ATP hydrolysis and γ-phosphate dissociation allowed actin filament severing by cofilin. The model could simulate the assembly and disassembly of actin and other actin patch proteins using measured cytoplasmic concentrations of the proteins. However, to account quantitatively for the numbers of proteins measured over time in the accompanying article (Sirotkin et al., 2010 , MBoC 21: 2792–2802), two reactions must be faster in cells than in vitro. Conditions inside the cell allow capping protein to bind to the barbed ends of actin filaments and Arp2/3 complex to bind to the sides of filaments faster than the purified proteins in vitro. Simulations also show that depolymerization from pointed ends cannot account for rapid loss of actin filaments from patches in 10 s. An alternative mechanism consistent with the data is that severing produces short fragments that diffuse away from the patch.  相似文献   

17.
Control of actin assembly nucleated by the Arp2/3 complex plays a crucial role during budding yeast endocytosis. The yeast Eps15-related Arp2/3 complex activator, Pan1p, is essential for endocytic internalization and proper actin organization. Pan1p activity is negatively regulated by Prk1 kinase phosphorylation after endocytic internalization. Phosphorylated Pan1p is probably then dephosphorylated in the cytosol. Pan1p is recruited to endocytic sites approximately 25 s before initiation of actin polymerization, suggesting that its Arp2/3 complex activation activity is kept inactive during early stages of endocytosis by a yet-to-be-identified mechanism. However, how Pan1p is maintained in an inactive state is not clear. Using tandem affinity purification-tagged Pan1p, we identified End3p as a stoichiometric component of the Pan1p complex, and Sla2p, a yeast Hip1R-related protein, as a novel binding partner of Pan1p. Interestingly, Sla2p specifically inhibited Pan1p Arp2/3 complex activation activity in vitro. The coiled-coil region of Sla2p was important for Pan1p inhibition, and a pan1 partial loss-of-function mutant suppressed the temperature sensitivity, endocytic phenotypes, and actin phenotypes observed in sla2DeltaCC mutant cells that lack the coiled-coil region. Overall, our results establish that Sla2p's regulation of Pan1p plays an important role in controlling Pan1p-stimulated actin polymerization during endocytosis.  相似文献   

18.
Three cell-permeant compounds, cytochalasin D, latrunculin A and jasplakinolide, which perturb intracellular actin dynamics by distinct mechanisms, were used to probe the role of filamentous actin and actin assembly in clathrin-mediated endocytosis in mammalian cells. These compounds had variable effects on receptor-mediated endocytosis of transferrin that depended on both the cell line and the experimental protocol employed. Endocytosis in A431 cells assayed in suspension was inhibited by latrunculin A and jasplakinolide, but resistant to cytochalasin D, whereas neither compound inhibited endocytosis in adherent A431 cells. In contrast, endocytosis in adherent CHO cells was more sensitive to disruption of the actin cytoskeleton than endocytosis in CHO cells grown or assayed in suspension. Endocytosis in other cell types, including nonadherent K562 human erythroleukemic cells or adherent Cos-7 cells was unaffected by disruption of the actin cytoskeleton. While it remains possible that actin filaments can play an accessory role in receptor-mediated endocytosis, these discordant results indicate that actin assembly does not play an obligatory role in endocytic coated vesicle formation in cultured mammalian cells.  相似文献   

19.
A convergence of cellular, genetic and biochemical studies supports the hypothesis that the actin cytoskeleton is coupled to endocytic processes, but the roles played by actin filaments during endocytosis are not yet clear. Recent studies have identified several proteins that may functionally link the endocytic machinery with actin filament dynamics. Three of these proteins, Abp1p, Pan1p and cortactin, are activators of actin assembly nucleated by the Arp2/3 complex, a key regulator of actin assembly in vivo. Two others, intersectin and syndapin, bind N-WASp, a potent activator of actin assembly via the Arp2/3 complex. All of these proteins also bind components of the endocytic machinery, and thus, could coordinately regulate actin assembly and trafficking events. Hip1R, an F-actin-binding protein that associates with clathrin-coated vesicles, may physically link endocytic vesicles to actin filaments. The GTPase dynamin is implicated in modulating actin filaments at specialized actin-rich structures of the cell cortex, suggesting that dynamin may regulate the organization of cortical actin filaments as well as regulate actin dynamics during endocytosis. Finally, myosin VI may generate actin-dependent forces for membrane invagination or vesicle movement during the early stages of endocytosis.  相似文献   

20.
Aip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and analysis, we show that heterodimeric capping protein can replace Aip1p, but Aip1p cannot replace capping protein in endocytic patches. Our quantitative analysis reveals that the actin meshwork is organized radially and is compacted by the cross-linker fimbrin before the endocytic vesicle is released from the plasma membrane. Capping protein and Aip1p help maintain the high density of actin filaments in meshwork by keeping actin filaments close enough for cross-linking. Our experiments also reveal new cellular functions for Acp1p and Acp2p independent of their capping activity. We identified two independent pathways that control polarization of endocytic sites, one depending on acp2+ and aip1+ during interphase and the other independent of acp1+, acp2+, and aip1+ during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号