首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread thioredoxin superfamily enzymes typically share the following features: a characteristic α-β fold, the presence of a Cys-X-X-Cys (or Cys-X-X-Ser) redox-active motif, and a proline in the cis configuration abutting the redox-active site in the tertiary structure. The Cys-X-X-Cys motif is at the solvent-exposed amino terminus of an α-helix, allowing the first cysteine to engage in nucleophilic attack on substrates, or substrates to attack the Cys-X-X-Cys disulfide, depending on whether the enzyme functions to reduce, isomerize, or oxidize its targets. We report here the X-ray crystal structure of an enzyme that breaks many of our assumptions regarding the sequence-structure relationship of thioredoxin superfamily proteins. The yeast Protein Disulfide Isomerase family member Eps1p has Cys-X-X-Cys motifs and proline residues at the appropriate primary structural positions in its first two predicted thioredoxin-fold domains. However, crystal structures show that the Cys-X-X-Cys of the second domain is buried and that the adjacent proline is in the trans, rather than the cis isomer. In these configurations, neither the “active-site” disulfide nor the backbone carbonyl preceding the proline is available to interact with substrate. The Eps1p structures thus expand the documented diversity of the PDI oxidoreductase family and demonstrate that conserved sequence motifs in common folds do not guarantee structural or functional conservation.  相似文献   

2.
3.
4.
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions.  相似文献   

6.
Adaptor protein complex 2 α and β-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of β-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the β-appendage (the “top” and “side” sites) that bind motifs distinct from those previously identified on the α-appendage. We solved the structure of the β-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor β-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the β-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability (“matricity”). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as β-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors.  相似文献   

7.
SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved ββαββαβ fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pombe.  相似文献   

8.
We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10–40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel β-sheet and five α-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.  相似文献   

9.
RD1 is a 7-kDa globular protein from the Antarctic eel pout Lycodichthys dearborni. It belongs to type III of the four types of antifreeze proteins (AFPs) found in marine fishes living at subzero temperatures. For type III AFP, a potential ice-binding flat surface has been identified and is imbedded with side chains capable of making hydrogen bonds with a specific lattice plane on ice. So far, all crystallographic studies on type III AFPs were carried out using the Atlantic ocean pout Macrozoarces americanus as the source organism. Here we present the crystal structure of a type III AFP from a different zoarcid fish, and at an ultra-high resolution of 0.62 Å. The protein fold of RD1 comprises a compact globular domain with two internal tandem motifs arranged about a pseudo-dyad symmetry. Each motif of the “pretzel fold” includes four short β-strands and a 310 helix. There is a novel internal cavity of 45 Å3 surrounded by eight conserved nonpolar residues. The model contains several residues with alternate conformations, and a number of split water molecules, probably caused by alternate interactions with the protein molecule. After extensive refinement that includes hydrogen atoms, significant residual electron densities associated with the electrons of peptides and many other bonds could be visualized.  相似文献   

10.

Background

We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the βγ-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in βγ-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations.

Methods

Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico.

Results

Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology.

Conclusion

When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display ‘native state aggregation’, leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy “distort motif, lose central vision”.  相似文献   

11.
12.
Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit.  相似文献   

13.
14.
本研究以赤散囊菌Eurotium rubrum全基因组序列为对象,利用HMMER软件构建隐马尔可夫模型(hidden markov models,HMM)结合BLAST的方法鉴定了促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)超家族。通过构建系统发育树对鉴定蛋白进行分析,并利用MEME软件进行了保守性基序的预测及活性位点注释。分析结果表明,赤散囊菌基因组包含了4个MAPK蛋白,分别属于Hog1-type、MpkC-type、Slt2-type和Fus3/Kss1-type类型;3个MAPK kinase(MAPKK)蛋白,分别属于MKK1-type、Pbs2-type和Ste7-type类型;3个MAPK kinase kinase(MAPKKK)蛋白,分别属于BCK1-type、Ste11-type和Ssk22-type类型。保守性基序分析及注释结果表明,MAPKs超家族蛋白都包含了蛋白激酶活性位点“-D[L/I/V]K-”以及保守性的ATP-binding标签序列。MAPK与MAPKK蛋白分别包含了“-TxY-”和“-SD[I/V]WS-”磷酸化位点,且MAPK蛋白还包含一个保守性的common docking基序(CD motif),而MAPKKK蛋白则包含了一个功能不明的保守性基序,其一致性序列为“-GTPYWMAPEV-”。研究结果为揭示MAPKs信号途径在赤散囊菌中参与调控的生物学过程奠定了基础。  相似文献   

15.
The C-terminal V5 domain is one of the most variable domains in Protein Kinase C isoforms (PKCs). V5 confers isoform specificity on its parent enzyme through interactions with isoform-specific adaptor proteins and possibly through specific intra-molecular interactions with other PKC domains. The structural information about V5 domains in solution is sparse. The objective of this work was to determine the conformational preferences of the V5 domain from the α isoform of PKC (V5α) and evaluate its ability to associate with membrane mimetics. We show that V5α and its phosphorylation-mimicking variant, dmV5α, are intrinsically disordered protein domains. Phosphorylation-mimicking mutations do not alter the overall conformation of the polypeptide backbone, as evidenced by the local nature of chemical shift perturbations and the secondary structure propensity scores. However, the population of the “cis-trans” conformer of the Thr638-Pro639-Pro640 turn motif, which has been implicated in the down-regulation of PKCα via peptidyl-prolyl isomerase Pin1, increases in dmV5α, along with the conformational flexibility of the region between the turn and hydrophobic motifs. Both wild type and dmV5α associate with micelles made of a zwitterionic detergent, n-dodecylphosphocholine. Upon micelle binding, V5α acquires a higher propensity to form helical structures at the conserved “NFD” motif and the entire C-terminal third of the domain. The ability of V5α to partition into the hydrophobic micellar environment suggests that it may serve as a membrane anchor during the PKC maturation process.  相似文献   

16.
17.
Protein-DNA interactions facilitate the fundamental functions of living cells and are universal in all living organisms. Several investigations have been carried out, essentially identifying pairs of interactions between the amino acid residues in proteins and the bases in DNA. In the present study, we have detected the recognition motifs that may constitute a cluster of spatially interacting residues in proteins, which interact with the bases of DNA. Graph spectral algorithm has been used to detect side chain clusters comprising Arg, Lys, Asn, Gln and aromatic residues from proteins interacting with DNA. We find that the interaction of proteins with DNA is through clusters in about half of the proteins in the dataset and through individual residues in the rest. Furthermore, inspection of the clusters has revealed additional interactions in a few cases, which have not been reported earlier. The geometry of the interaction between the DNA base and the protein residue is quantified by the distance d and the angle theta. These parameters have been identified for the cation-pi/H-bond stair motif that was reported earlier. Among the Arg, Lys, Asn and Gln residues, the range of (d, theta) values of the interacting Arg clearly falls into the cation-pi and the hydrogen bond interactions of the 'cation-pi/H-bond' stair motif. Analysis of the cluster composition reveals that the Arg residue is predominant than the Lys, Asn and Gln residues. The clusters are classified into Type I and Type II based on the presence or absence of aromatic residues (Phe, Tyr) in them. Residue conservation in these clusters has been examined. Apart from the conserved residues identified previously, a few more residues mainly Phe, Tyr and Arg have also been identified as conserved and interactive with the DNA. Interestingly, a few residues that are parts of interacting clusters and do not interact directly with the DNA have also been conserved. This emphasizes the importance of recognizing the protein side chain cluster motifs interacting with the DNA, which could serve as signatures of protein-DNA recognition in the families of DNA binding proteins.  相似文献   

18.
Proteins with β-sandwich and β-grasp topologies are resistant to mechanical unfolding as shown by single-molecule force spectroscopy studies. Their high mechanical stability has generally been associated with the mechanical clamp geometry present at the termini. However, there is also evidence for the importance of interactions other than the mechanical clamp in providing mechanical stability, which needs to be tested thoroughly. Here, we report the mechanical unfolding properties of ubiquitin-like proteins (SUMO1 and SUMO2) and their comparison with those of ubiquitin. Although ubiquitin and SUMOs have similar size and structural topology, they differ in their sequences and structural contacts, making them ideal candidates to understand the variations in the mechanical stability of a given protein topology. We observe a two-state unfolding pathway for SUMO1 and SUMO2, similar to that of ubiquitin. Nevertheless, the unfolding forces of SUMO1 (∼130 pN) and SUMO2 (∼120 pN) are lower than that of ubiquitin (∼190 pN) at a pulling speed of 400 nm/s, indicating their lower mechanical stability. The mechanical stabilities of SUMO proteins and ubiquitin are well correlated with the number of interresidue contacts present in their structures. From pulling speed-dependent mechanical unfolding experiments and Monte Carlo simulations, we find that the unfolding potential widths of SUMO1 (∼0.51 nm) and SUMO2 (∼0.33 nm) are much larger than that of ubiquitin (∼0.19 nm), indicating that SUMO1 is six times and SUMO2 is three times mechanically more flexible than ubiquitin. These findings might also be important in understanding the functional differences between ubiquitin and SUMOs.  相似文献   

19.

Background

Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity.

Methodology/Principal Findings

Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs.

Conclusions/Significance

We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号