首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lipase was partially purified from the almond (Amygdalus communis L.) seed by ammonium sulfate fractionation and dialysis. Kinetics of the enzyme activity versus substrate concentration showed typical lipase behavior, with K(m) and V(max) values of 25 mM and 113.63 micromol min(-1) mg(-1) for tributyrin as substrate. All triglycerides were efficiently hydrolyzed by the enzyme. The partially purified almond seed lipase (ASL) was stable in the pH range of 6-9.5, with an optimum pH of 8.5. The enzyme was stable between 20 and 90 degrees C, beyond which it lost activity progressively, and exhibited an optimum temperature for the hydrolysis of soy bean oil at 65 degrees C. Based on the temperature activity data, the activation energy for the hydrolysis of soy bean oil was calculated as -5473.6 cal/mol. Soy bean oil served as good substrate for the enzyme and hydrolytic activity was enhanced by Ca(2+), Fe(2+), Mn(2+), Co(2+), and Ba(2+), but strongly inhibited by Mg(2+), Cu(2+), and Ni(2+). The detergents, sodiumdeoxicholate and Triton X-100 strongly stimulated enzyme activity while CTAB, DTAB, and SDS were inhibitors. Triton X-405 had no effect on lipase activity. The partially purified enzyme retained its activity for more than 6 months at -20 degrees C, beyond which it lost activity progressively.  相似文献   

2.
【背景】脂肪酶是一类特殊的酯键水解酶,广泛应用于工业化生产中,微生物是工业脂肪酶的主要来源。瘤胃中微生物种类繁多、数量庞大,已有关于瘤胃微生物产纤维素酶的报道,尚无产脂肪酶瘤胃微生物的分离筛选报道。【目的】从牦牛瘤胃中分离筛选出能够产脂肪酶的微生物,并进行菌株鉴定及其酶学性质的研究。【方法】以橄榄油为唯一碳源,通过中性红油脂平板进行初步筛选后,用改进铜皂-分光光度法测定酶活力进行复筛;再经形态学观察、生理生化实验和16S rRNA基因序列分析进行菌种鉴定;研究3种脂肪酶的最适作用温度、pH值及金属离子、有机溶剂和表面活性剂对酶活力的影响。【结果】筛选出6株酶活力较高的菌株,其中3株为液化沙雷氏菌,2株为白地霉,1株为卷枝毛霉。脂肪酶的酶学性质研究表明:液化沙雷氏菌、白地霉和卷枝毛霉所产脂肪酶的最适作用温度为45、35和40°C;最适pH为8.0、7.0和7.0;Ca2+和Mg2+对3种脂肪酶均有激活作用;Zn2+对3种脂肪酶有不同程度的抑制作用,EDTA、SDS可使3种脂肪酶失活;3种脂肪酶对丙三醇的耐受力较高,卷枝毛霉脂肪酶对甲醇、乙醇、丙酮的耐受力较高。【结论】从牦牛瘤胃中分离出3种产脂肪酶的微生物,且证实瘤胃微生物在脂肪酶研究方面具有较高的价值。  相似文献   

3.
Mucor lipolyticus Aac-0102, a new species of Mucor, accumulated lipase in culture fluid when grown in a medium composed of soluble starch, soy bean meal, (NH4)2SO4, and K2HPO4. This strain was the most lipolytic of the genus Mucor surveyed.

The culture fluid of this strain hydrolyzed various kinds of fatty acid esters, such as glycerides, Tweens or Spans and optimum activity for the hydrolysis of olive oil occurred at pH 8.0. This pH optimum was common to the lipases of the type cultures Mucor tested. The lipase of Mucor species may be different from that of Rhizopus species or other molds, since their pH optima are not the same.  相似文献   

4.
Two enzymatic extracts obtained from xylan-grown Aspergillus terreus CCMI 498 and cellulose-grown Trichoderma viride CCMI 84 were characterised for different glycanase activities. Both strains produce extracellular endoxylanase and endoglucanase enzymes. The enzymes optimal activity was found in the temperature range of 45–60 °C. Endoglucanase systems show identical activity profiles towards temperature, regardless of the strain and inducing substrate. Conversely, the endoxylanases produced by both strains showed maximal activity at different pH values (from 4.5 to 5.5), being the more acidic xylanase produced by T. viride grown on cellulose. The endoglucanase activities have an optimum pH at 4.5–5.0. The endoxylanase and endoglucanase activities exhibited high stability at 50 °C and pH 5.0. Mannanase, β-xylosidase, and amylase activities were also found, being the first two activities only present for T. viride extract. These two enzymatic extracts were used for mixed office wastepaper (MOW) deinking. When the enzymatic extract from T. viride was used, a further increase of 24% in ink removal was obtained by comparison with the control. Both enzymes contributed to the improvement of the paper strength properties and the obtained results clearly indicate that the effective use of enzymes for deinking can also contribute to the pulp and paper properties improvement.  相似文献   

5.
Two types of extracellular lipases (I and II) from Trichosporon fermentans WU-C12 were purified by acetone precipitation and successive chromatographies on Butyl-Toyopearl 650 M, Toyopearl HW-55F and Q-Sepharose FF. The molecular weight of lipase I was 53 kDa by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 160 kDa by gel filtration, while that of lipase II was 55 kDa by SDS-PAGE and 60 kDa by gel filtration. For the hydrolysis of olive oil, the optimum pH and temperature of both the lipases were 5.5 and 35°C, respectively. The lipases showed stable activities after incubation at 30°C for 24 h in a pH range from 4.0 to 8.0. The thermostability of lipase I for 30 min at a reaction pH of 5.5 was up to 40°C, while that of lipase II under the same conditions was up to 50°C. Both lipases could hydrolyze the 1-, 2-, and 3-positions of triolein, and cleave all three ester bonds, regardless of the position in the triglyceride.  相似文献   

6.
Summary Three distinct forms of lipolytic enzyme were identified in a commercialCandida lipase preparation. Two of these lipases (lipases A & C) were isolated and characterized. Lipase A had a higher optimal reaction pH and a better thermal stability than those of lipase C. Lipase A and C displayed different acyl chain length specificity on the lipolysis of p-nitrophenol esters.  相似文献   

7.
Out of some 750 strains of microorganisms, a potent bacterium for lipase production was isolated from soil and was identified as Chromobacterium viscosum.

The bacterium accumulates lipase in culture fluid when grown aerobically at 26°C for 3 days in a medium composed of soluble starch, soy bean meal, lard and inorganic salts.

Chromobacterium lipase had an optimum pH of 7.0 for activity at 37°C, and an optimal temperature of 65°C at pH 7.0. The enzyme retained 80% of the activity when heated for 10 min at 70°C. This lipase was capable of hydrolyzing a variety of natural fats and oils, and it was more active on lard and butter than on olive oil. The activity was stimulated by Ca2+, Mg2+, Mn2+ and inhibited by Cu2+, Hg2+ and Sn2+. It was not diminished but rather stimulated by a high concentration of bile-salts.  相似文献   

8.
The production, purification and characterization of cold active lipases by Yarrowia lipolytica NCIM 3639 is described. The study presents a new finding of production of cell bound and extracellular lipase activities depending upon the substrate used for growth. The strain produced cell bound and extracellular lipase activity when grown on olive oil and Tween 80, respectively. The organism grew profusely at 20 °C and at initial pH of 5.5, producing maximum extracellular lipase. The purified lipase has a molecular mass of 400 kDa having 20 subunits forming a multimeric native protein. Further the enzyme displayed an optimum pH of 5.0 and optimum temperature of 25 °C. Peptide mass finger printing reveled that some peptides showed homologues sequence (42%) to Yarrowia lipolytica LIP8p. The studies on hydrolysis of racemic lavandulyl acetate revealed that extracellular and cell bound lipases show preference over the opposite antipodes of irregular monoterpene, lavandulyl acetate.  相似文献   

9.
近年来溶胶-凝胶法固定脂肪酶已成为研究热点。选用TMOS、MTMS、ETMS和PTMS 4种硅烷试剂对黑曲霉脂肪酶进行了固定化研究。固定化的最佳配方为ETMS/TMOS=5:1、水与硅烷试剂分子比为8;固定化脂肪酶的固定率为80.2%、相对活性为136.3%;以乳化橄榄油作为底物,在50℃和pH4.0的条件下,固定化脂肪酶与游离脂肪酶Km分别为1.899×10-4M和2.789×10-4M;最适反应pH均为pH4.0,固定化脂肪酶在pH4.0~pH5.5之间其活性能保持95%以上;固定化脂肪酶最适反应温度为60℃,较游离脂肪酶提高了10℃;固定化脂肪酶的酸碱稳定性和热稳定性较非固定化酶有显著的提高。固定化脂肪酶的使用寿命和保存稳定性良好,使用12次后仍能够保留71.7%活性,在室温避光条件下保存180天后仍可保留79.2%活性。  相似文献   

10.
A lipase gene SR1 encoding an extracellular lipase was isolated from oil-contaminated soil and expressed in Escherichia coli. The gene contained a 1845-bp reading frame and encoded a 615-amino-acid lipase protein. The mature part of the lipase was expressed with an N-terminal histidine tag in E. coli BL21, purified and characterized biochemically. The results showed that the purified lipase combines the properties of Pseudomonas chlororaphis and other Serratia lipases characterized so far. Its optimum pH and temperature for hydrolysis activity was pH 5.5-8.0 and 37°C respectively. The enzyme showed high preference for short chain substrates (556.3±2.8 U/μg for C10 fatty acid oil) and surprisingly it also displayed high activity for long-chain fatty acid. The deduced lipase SR1 protein is probably from Serratia, and is organized as a prepro-protein and belongs to the GXSXG lipase family.  相似文献   

11.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

12.
The yeast Yarrowia lipolytica degrades efficiently low-cost hydrophobic substrates for the production of various added-value products such as lipases. To obtain yeast strains producing high levels of extracellular lipase, Y. lipolytica DSM3286 was subjected to mutation using ethyl methanesulfonate (EMS) and ultraviolet (UV) light. Twenty mutants were selected out of 1600 mutants of Y. lipolytica treated with EMS and UV based on lipase production ability on selective medium. A new industrial medium containing methyl oleate was optimized for lipase production. In the 20 L bioreactor containing new industrial medium, one UV mutant (U6) produced 356 U/mL of lipase after 24h, which is about 10.5-fold higher than that produced by the wild type strain. The properties of the mutant lipase were the same as those of the wild type: molecular weight 38 kDa, optimum temperature 37°C and optimum pH 7. Furthermore, the nucleotide sequences of extracellular lipase gene (LIP2) in wild type and mutant strains were determined. Only two silent substitutions at 362 and 385 positions were observed in the ORF region of LIP2. Two single substitutions and two duplications of the T nucleotide were also detected in the promoter region. LIP2 sequence comparison of the Y. lipolytica DSM3286 and U6 strains shows good targets to effective DNA recombinant for extracellular lipase of Y. lipolytica.  相似文献   

13.
Lipase Activities in Castor Bean Endosperm during Germination   总被引:4,自引:17,他引:4       下载免费PDF全文
Two lipases were found in extracts from castor bean (Ricinus communis L.) endosperm. One, with optimal activity at pH 5.0 (acid lipase), was present in dry seeds and displayed high activity during the first 2 days of germination. The second, with an alkaline pH optimum (alkaline lipase), was particularly active during days 3 to 5. When total homogenates of endosperm were fractionated into fat layer, supernatant, and particulate fractions, the acid lipase was recovered in the fat layer, and the alkaline lipase was located primarily in the particulate fraction. Sucrose density gradient centrifugation showed that the alkaline lipase was located mainly in glyoxysomes, with some 30% of the activity in the endoplasmic reticulum. When glyoxysomes were broken by osmotic shock and exposed to KCl, which solubilizes most of the enzymes, the alkaline lipase remained particulate and was recovered with the glyoxysomal “ghosts” at equilibrium density 1.21 g/cm3 on the sucrose gradient. Association of the lipase with the gly-oxysomal membrane was supported by the responses to detergents and to butanol. The alkaline lipase hydrolyzed only monosubstituted glycerols. The roles of the two lipases in lipid utilization during germination of castor bean are discussed.  相似文献   

14.
脂肪酶产生菌分离,鉴定及酶性质的研究   总被引:7,自引:0,他引:7  
从含油污泥中分离筛选出17株产脂肪酶菌株,对其中一株进行鉴定,为无花果丝孢酵母(Trichospfigueriae).研究了该菌的最适产酶条件,并对其部分酶性质进行了研究.  相似文献   

15.
Lipase producing ability of 120 bacterial isolates was examined qualitatively, resulting in 32 lipase producers, which were further screened for 1,3-regiospecificity. Three Bacillus (GK-8, GK-31 and GK-42) and one Pseudomonas (GK-80) were found to produce 1,3-regiospecific lipases. These lipases were alkaline in nature as they showed pH optima of 9.0 and high stability in the alkaline pH range of 8.0–11.0. The lipases from three Bacillus isolates, viz. GK-8, GK-31 and GK-42 showed temperature optima of 37 °C, whereas the Pseudomonas (GK-80) lipase showed optimum activity at 50 °C. The lipase of GK-8 was highly stable and showed enhanced activity in different organic solvents like petroleum ether (172%), diethyl ether (143%) and acetone (135%).  相似文献   

16.
Bacterial true lipases having thermo and alkaline stability are highly attractive for their industrial production of pharmaceuticals, agrochemicals, cosmetics, and flavour. Staphylococcus aureus lipase (SAL3) remains active at temperatures 40-60°C, with an optimum temperature of 55°C and an optimum pH of 9.5 stable over a range of 5-12. Detailed understanding of the structure and insight into the activity of such lipase would aid in engineering lipases that would function in the desired extreme industrial environments. In the present study, we carried out in silico characterization and structural modeling of SAL3 which is thermoactive, alkaline and detergent-stable. Comparison of SAL3 with other staphylococcal lipases indicates that SAL3 is a true lipase having the catalytic triad (residues Ser119, Asp310 & His352) and the calcium binding site (residues Asp351, Asp354, Asp359, Asp362 and Gly286). Conservation in sequence implies that interfacial activation mechanism is possible in SAL3 with the lid formed by helix (residues 180-196) and loop (residues 197-206). Three dimensional (3D) structure model of SAL3 has been predicted for the first time and aims at understanding its function and biochemical characteristics of possessing relatively high thermal and pH stability.  相似文献   

17.
Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.  相似文献   

18.
Summary Three strains of Geotrichum candidum (ATCC 34614, NRRL Y-552 and NRRL Y-553) were examined for lipase production and activity. Variables including medium, pH, temperature, agitation rate and incubation time were examined to define the optimal culture conditions. Growth on oil in complex medium at 30°C, 300 rpm, and pH 7 produced maximal lipase activity. Fatty acid specificity of these strains and of two crude G. candidum enzyme preparations (lipase 26557 RP, Rhône Poulenc and lipase GC-4, Amano) was measured using equimolar mixtures of methyl or butyl esters of palmitic and oleic acids. The lipase from NRRL Y-553 and lipase 26557 RP displayed preferential specificity for hydrolyzing oleic acid esters, while the lipases from ATCC 34614, NRRL Y-552 and lipase GC-4 failed to discriminate between plamitic and oleic acids.  相似文献   

19.
Zirconium phosphate (ZrP), a low-cost inorganic material with well-defined physicochemical properties, was successfully used as support for immobilizing Candida rugosa lipase by covalent bonding. The immobilized derivative showed high catalytic activity in both aqueous and non-aqueous media. Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy measurements demonstrated that the ZrP fulfilled the morphological requirements for use as a matrix for immobilizing lipases. The free and immobilized lipases were compared in terms of pH, temperature and thermal stability. The immobilized lipase had a higher pH optimum (7.5) and higher optimum temperature (50°C) than the free lipase. Immobilization also increased the thermal stability. The hydrolysis of p-nitrophenyl palmitate (pNPP) by immobilized lipase, examined at 37°C, followed Michaelis-Menten kinetics. Values for Km=1.18 µM and Vmax=325Umg-1 indicated that the immobilized system was subject to mass transfer limitations. The immobilized derivative was also tested under repetitive reaction batches in both ester hydrolysis and synthesis.  相似文献   

20.
A study was undertaken to establish conditions and relationships for the production of lipases during hydrocarbon fermentation. A culture of Candida lipolytica was isolated by a kerosene enrichment technique from oil-soaked soil and this microbe was used to study the production of lipase on a kerosene-mineral salts medium. The optimum pH, medium, and temperature for lipase synthesis were established and the properties of the isolated enzyme in terms of its activity and lipid specificity were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号