首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of autonomously replicating plasmids to recombine in mammalian cells was investigated. Two deletion plasmids of the eukaryotic-prokaryotic shuttle vector pSV2neo were cotransfected into transformed monkey COS cells. Examination of the low molecular weight DNA isolated after 48 hr of incubation revealed that recombination between the plasmids had occurred. The DNA was also used to transform recA- E. coli. Yield of neoR colonies signified homologous recombination. Examination of the plasmid DNA from these colonies confirmed this view. Double-strand breaks in one or both of the input plasmids at the sites of deletion resulted in an enhancement of recombination frequency. The recombination process yielded monomeric and dimeric molecules. Examination of these molecules revealed that reciprocal recombination as well as gene conversion events were involved in the generation of plasmids bearing an intact neo gene. The COS cell system we describe is analogous to study of bacteriophage recombination and yeast random-spore analysis.  相似文献   

2.
We have designed an in vitro system using mammalian nuclear extracts, or fractions derived from them, that can restore the sequences missing at double-strand breaks (gaps) or in deletions. The recombination substrates consist of (i) recipient DNA, pSV2neo with gaps or deletions ranging from 70 to 390 bp in the neo sequence, and (ii) donor DNAs with either complete homology to the recipient (pSV2neo) or plasmids whose homology with pSV2neo is limited to a 1.0- to 1.3-kbp neo segment spanning the gaps or deletions. Incubation of these substrates with various enzyme fractions results in repair of the recipient DNA's disrupted neo gene. The recombinational repair was monitored by transforming recA Escherichia coli to kanamycin resistance and by a new assay which measures the extent of DNA strand transfer from the donor substrate to the recipient DNA. Thus, either streptavidin- or antidigoxigenin-tagged beads are used to separate the biotinylated or digoxigeninylated recipient DNA, respectively, after incubation with the isotopically labeled donor DNA. In contrast to the transfection assay, the DNA strand transfer measurements are direct, quantitative, rapid, and easy, and they provide starting material for the characterization of the recombination products and intermediates. Accordingly, DNA bound to beads serves as a suitable template for the polymerase chain reaction. With appropriate pairs of oligonucleotide primers, we have confirmed that both gaps and deletions are fully repaired, that deletions can be transferred from the recipient DNA to the donor's intact neo sequence, and that cointegrant molecules containing donor and recipient DNA sequences are formed.  相似文献   

3.
Intermolecular homologous recombination in plants.   总被引:16,自引:6,他引:10       下载免费PDF全文
To study DNA topological requirements for homologous recombination in plants, we have constructed pairs of plasmids that contain nonoverlapping deletions in the neomycin phosphotransferase gene [APH(3')II], which, when intact, confers kanamycin resistance to plant cells. Protoplasts isolated from Nicotiana tabacum were cotransformed with complementary pairs of plasmids containing these truncated gene constructs. Homologous recombination or gene conversion within the homologous sequences (6 to 405 base pairs) of the protein-coding region of the truncated genes led to the restoration of the functional APH(3')II gene, rendering these cells resistant to kanamycin. Circular plasmid DNAs recombined very inefficiently, independent of the length of the homologous region. A double-strand break in one molecule only slightly increased the recombination frequency. The most favorable substrates for recombination were linear molecules. In this case, the recombination frequency was positively correlated with the length of the homologous regions. The recombination frequency of plasmids linearized at sites proximal to the deletion-homology junction was significantly higher than when linearization was distal to the homologous region. Vector homology within cotransformed plasmid sequences also increased the recombination frequency.  相似文献   

4.
Repair of DNA damage resulting in double-strand breaks (DSBs) is controlled by gene products executing homologous recombination or end-joining pathways. The MRE11 gene has previously been implicated in DSB repair in the yeast Saccharomyces cerevisiae . Here we have developed a methodology to study the roles of the murine Mre11 homolog in pluripotent embryonic stem cells. Using a gene targeting approach, a triple LoxP site cassette was inserted into a region of MRE11 genomic DNA flanking conserved phosphodiesterase motifs. The addition of Cre recombinase activity promotes deletions of three types that can be scored. We find that deletion at phosphodiesterase motif III encoded in the N-terminus of Mre11 is acheived in the presence of a wild-type MRE11 allele. However, when the wild-type MRE11 allele is inactivated by gene targeted insertion of a neo marker, only Cre recombination events that allow expression of wild-type Mre11 protein are observed. Therefore, Mre11 is required for normal cell proliferation. This methodology introduces a means to study important regions of essential genes in cell culture models.  相似文献   

5.
DNA damage-induced multiple recombination was studied by cotransforming yeast cells with pairs of nonreplicating plasmids carrying different genetic markers. Reaction of one of the plasmids with the interstrand crosslinking agent, psoralen, stimulated cellular transformation by the undamaged plasmid. The cotransformants carried copies of both plasmids cointegrated in tandem arrays at chromosomal sites homologous to either the damaged or the undamaged DNA. Plasmid linearization, by restriction endonuclease digestion, was also found to stimulate the cointegration of unmodified plasmids. Disruption of the RAD1 gene reduced the psoralen damage-induced cotransformation of intact plasmid, but had no effect on the stimulation by double strand breaks. Placement of the double strand breaks within yeast genes produced cointegration only at sequences homologous to the damaged plasmids, while digestion within vector sequences produced integration at chromosomal sites homologous to either the damaged or the undamaged plasmid molecules. These observations suggest a model for multiple recombination events in which an initial exchange occurs between the damaged DNA and homologous sequences on an undamaged molecule. Linked sequences on the undamaged molecule up to 870 base pairs distant from the break site participate in subsequent exchanges with other intact DNA molecules. These events result in recombinants produced by reciprocal exchange between three or more DNA molecules.  相似文献   

6.
Homologous recombination (HR) is established as a significant contributor to double-strand break (DSB) repair in mammalian somatic cells; however, its role in mammalian germ cells has not been characterized, although being conservative in nature it is anticipated to be the major pathway in germ cells. The germ cell system has inherent limitations by which intact cell approaches are not feasible. The present study, therefore, investigates HR-mediated DSB repair in mouse germ cell extracts by using an in vitro plasmid recombination assay based on functional rescue of a neomycin (neo) gene. A significantly high-fold increase in neo+ (Kan(R)) colonies following incubation of two plasmid substrates (neo delta1 and neo delta2) with testicular extracts demonstrated the extracts' ability to catalyze intermolecular recombination. A significant enhancement in recombinants upon linearization of one of the plasmids suggested the existence of an HR-mediated DSB repair activity. Comparison of the activity at sequential developmental stages, spermatogonia, spermatocytes and spermatids revealed its presence at all the stages; spermatocyte being the most proficient stage. Further, restriction analysis of recombinant plasmids indicated the predominance of gene conversion in enriched spermatocytes (mostly pachytenes), in contrast to gonial and spermatid extracts that showed higher reciprocal exchange. In conclusion, this study demonstrates HR repair activity at all stages of male germ cells, suggesting an important role of HR-mediated DSB repair during mammalian spermatogenesis. Further, the observed preference of gene conversion over reciprocal exchange at spermatocyte stage correlates with the close association of gene conversion with the meiotic recombination program.  相似文献   

7.
The mechanism by which double-strand cleavages stimulate the joining of plasmid DNA fragments introduced into cultured mammalian cells was investigated by cotransfecting pairs of plasmids encoding deletion mutations in a dominant selectable gene into LMtk- cells. Plasmid recombination substrates were produced by creating deletions of different sizes within the neo coding region of the pSV2neo plasmid. Complementing pairs of deleted plasmid DNAs were linearized at specific unique sites before cotransfection into mouse LMtk- cells by the calcium phosphate precipitation method. Cleaving one donor plasmid produced a 4- to 10-fold stimulation in the production of colonies able to survive in medium containing G-418. The linearization of the second plasmid further increased the efficiency by another factor of 6 to 15 when the cut was made on the opposite side of the homology, approximately equidistant from the center of the overlap. Fifty-seven individual G-418-resistant colonies representing the products of individual crosses were isolated, and the genomic DNAs containing the presumably integrated, functional recombinant neo genes were analyzed on Southern blots. A band consistent with the exchange of markers flanking the neo gene was present in 90% of the DNAs examined. In only one case was the pattern indicative of either a double crossover or a gene conversion event. These results support the idea that homologous extrachromosomal DNA fragments are joined through annealing of overlapping single-stranded ends. This DNA-joining phenomenon may represent the activity of cellular DNA repair enzymes; its relationship to genetic recombination occurring at the chromosomal level remains to be determined.  相似文献   

8.
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits numerous biological responses including carcinogenicity. The molecular mechanism by which TCDD exerts its tumorigenic effects is unclear, since it does not directly damage DNA. TCDD-initiated toxicity can be mediated by the aryl hydrocarbon receptor (AhR) pathway and/or via increased oxidative stress. DNA damage, including DNA oxidation, can induce DNA double-strand breaks, which can be repaired through homologous recombination. Excessive DNA double-strand breaks may promote aberrant DNA recombination, which can lead to detrimental genetic changes and ultimately to carcinogenesis. TCDD has been shown to induce homologous recombination but the molecular mechanism mediating these events are unknown. To investigate the role of the AhR and oxidative DNA damage in mediating TCDD-induced homologous recombination we used a Chinese hamster ovary (CHO) cell line containing a neo direct repeat recombination substrate (CHO 3-6). CHO 3-6 cells were exposed to TCDD (50, 500 or 1000 pM) in the presence or absence of an AhR antagonists (0.1 microM alpha-naphthoflavone (alpha-NF)) for 6 or 24 h and 2 weeks later homologous recombination frequencies were determined by counting the number of neo expressing, G418-resistant colonies per live cells plated. TCDD-initiated DNA oxidation was determined by measuring the formation of 8-hydroxy-2'-deoxyguanosine via HPLC and electrochemical detection. Exposure to 500 pM TCDD for 24 h significantly increased the frequency of homologous recombination. Southern blot analysis on G418-resistant colonies determined that TCDD induced both conservative gene conversion events and deletion events. DNA oxidation was not increased in cells exposed to TCDD for either 6 or 24 h. However, alpha-naphthoflavone exposure resulted in a significant decrease in TCDD-induced homologous recombination frequency. These results suggest that TCDD-initiated homologous recombination in CHO 3-6 cells is mediated by the AhR and not via increased oxidative stress.  相似文献   

9.
In mammalian cells, DNA double-strand breaks are repaired by non-homologous end-joining and homologous recombination, both pathways being essential for the maintenance of genome integrity. We determined the effect of mutations in Ku86 and DNA-PK on the efficiency and the accuracy of double-strand break repair by non-homologous end-joining and homologous recombination in mammalian cells. We used an assay, based on the transient transfection of a linearized plasmid DNA, designed to simultaneously detect transfection and recombination markers. In agreement with previous results non-homologous end-joining was largely compromised in Ku86 deficient cells, and returned to normal in the Ku86-complemented isogenic cell line. In addition, analysis of DNA plasmids recovered from Ku86 mutant cells showed an increased use of microhomologies at the nonhomologous end joining junctions, and displayed a significantly higher frequency of DNA insertions compared to control cells. On the other hand, the DNA-PKcs deficient cell lines showed efficient double-strand break repair by both mechanisms.  相似文献   

10.
Homologous recombination catalyzed by human cell extracts.   总被引:19,自引:10,他引:9       下载免费PDF全文
Two plasmids containing noncomplementing and nonreverting deletions in a bacterial phosphotransferase gene conferring resistance to neomycin (Neor) were incubated with human cell extracts, and the mixtures were used to transform recombination-deficient (recA-) Escherichia coli cells. We were able to obtain Neor colonies at a frequency of 2 X 10(-3). This frequency was 100 to 1,000 times higher than that obtained with no extracts. The removal of riboadenosine 5'-triphosphate, Mg2+, or deoxynucleoside triphosphates from the reaction mixture severely reduced the yield of Neor colonies. Examination of plasmid DNA from the Neor colonies revealed that they resulted from gene conversion and reciprocal recombination. On the basis of these results, we conclude that mammalian somatic cells in culture have the enzymatic machinery to catalyze homologous recombination in vitro.  相似文献   

11.
Most of the recombination assays based on the regeneration of selectable marker genes after transient infection or stable integration of DNA into mammalian cells are time consuming. We have used plasmids containing two truncated but overlapping segments of the neomycin resistance gene to rapidly quantitate and characterize the time course of extrachromosomal homologous recombination of DNA transfected into monkey COS cells. By transiently infecting cells with these recombination substrates, extracting Hirt DNA after 1 to 4 days, and transforming recombination-deficient Escherichia coli, we have shown that recombination between direct repeats occurs at frequencies of 1 to 4%. We have also used Southern blot analysis to directly characterize the recombination of this DNA in COS cells and to demonstrate that double-strand breaks in the region of homology increase recombination frequencies 10- to 50-fold.  相似文献   

12.
Using the radiomimetic drug, bleomycin, we have determined the mutagenic potential of DNA strand breaks in the shuttle vector pZ189 in human fibroblasts. The bleomycin treatment conditions used produce strand breaks with 3'-phosphoglycolate termini as > 95% of the detectable dose-dependent lesions. Breaks with this end group represent 50% of the strand break damage produced by ionizing radiation. We report that such strand breaks are mutagenic lesions. The type of mutation produced is largely determined by the type of strand break on the plasmid (i.e. single versus double). Mutagenesis studies with purified DNA forms showed that nicked plasmids (i.e. those containing single-strand breaks) predominantly produce base substitutions, the majority of which are multiples, which presumably originate from error-prone polymerase activity at strand break sites. In contrast, repair of linear plasmids (i.e. those containing double-strand breaks) mainly results in deletions at short direct repeat sequences, indicating the involvement of illegitimate recombination. The data characterize the nature of mutations produced by single- and double-strand breaks in human cells, and suggests that deletions at direct repeats may be a 'signature' mutation for the processing of DNA double-strand breaks.  相似文献   

13.
Extrachromosomal and chromosomal gene conversion in mammalian cells.   总被引:17,自引:5,他引:12       下载免费PDF全文
We constructed substrates to study gene conversion in mammalian cells specifically without the complication of reciprocal recombination events. These substrates contain both an insertion mutation of the neomycin resistance gene (neoX) and an internal, homologous fragment of the neo gene (neo-526), such that gene conversion from neo-526 to neoX restores a functional neo gene. Although two reciprocal recombination events can also produce an intact neo gene, these double recombination events occur much less frequently that gene conversion in mammalian cells, We used our substrates to characterize extrachromosomal gene conversion in recombination-deficient bacteria and in monkey COS cells. Chromosomal recombination was also studied after stable integration of these substrates into the genome of mouse 3T6 cells. All extrachromosomal and chromosomal recombination events analyzed in mammalian cells resulted from gene conversion. Chromosomal gene conversion events occurred at frequencies of about 10(-6) per cell generation and restored a functional neo gene without overall effects on sequence organization.  相似文献   

14.
Orientation Dependence in Homologous Recombination   总被引:2,自引:1,他引:1       下载免费PDF全文
Homologous recombination was investigated in Escherichia coli with two plasmids, each carrying the homologous region (two defective neo genes, one with an amino-end deletion and the other with a carboxyl-end deletion) in either direct or inverted orientation. Recombination efficiency was measured in recBC sbcBC and recBC sbcA strains in three ways. First, we measured the frequency of cells carrying neo(+) recombinant plasmids in stationary phase. Recombination between direct repeats was much more frequent than between inverted repeats in the recBC sbcBC strain but was equally frequent in the two substrates in the recBC sbcA strain. Second, the fluctuation test was used to exclude bias by a rate difference between the recombinant and parental plasmids and led to the same conclusion. Third, direct selection for recombinants just after transformation with or without substrate double-strand breaks yielded essentially the same results. Double-strand breaks elevated recombination in both the strains and in both substrates. These results are consistant with our previous findings that the major route of recombination in recBC sbcBC strains generates only one recombinant DNA from two DNAs and in recBC sbcA strains generates two recombinant DNAs from two DNAs.  相似文献   

15.
In mammalian cells, chromosomal double-strand breaks are efficiently repaired, yet little is known about the relative contributions of homologous recombination and illegitimate recombination in the repair process. In this study, we used a loss-of-function assay to assess the repair of double-strand breaks by homologous and illegitimate recombination. We have used a hamster cell line engineered by gene targeting to contain a tandem duplication of the native adenine phosphoribosyltransferase (APRT) gene with an I-SceI recognition site in the otherwise wild-type APRT+ copy of the gene. Site-specific double-strand breaks were induced by intracellular expression of I-SceI, a rare-cutting endonuclease from the yeast Saccharomyces cerevisiae. I-SceI cleavage stimulated homologous recombination about 100-fold; however, illegitimate recombination was stimulated more than 1,000-fold. These results suggest that illegitimate recombination is an important competing pathway with homologous recombination for chromosomal double-strand break repair in mammalian cells.  相似文献   

16.
The region of the dystrophin gene containing introns 45-50 is characterized by a high rate of recombination events that give rise to large deletions causing dystrophinopathy. The nucleotide sequence of this intronic region has recently been released in GenBank. With the aim of further understanding the mechanism favoring the occurrence of these deletions, we have characterized the distribution of introns 47 and 48 deletion endpoints in 39 dystrophinopathy patients. In 14 of these patients we were able to sequence the break junction. On these sequences we were able to identify several intronic motifs that could predispose to DNA double-strand breaks. Our results, combined with other literature data, show that unequal homologous recombination is a very poorly represented event in the dystrophin gene, whereas junction features are suggestive of a model of recombination in which DNA double-strand breaks are incorrectly repaired by a nonhomologous end-joining mechanism. The correlation among recombination rate, deletion frequency, and percentage of repetitive elements is discussed.  相似文献   

17.
18.
19.
《Gene》1996,170(1):45-50
Repair of a double-strand break (DSB) was investigated by intermolecular recombination in Escherichia coli (Ec) recBC sbcBC cells with restriction enzyme-cleaved model plasmids. Circular plasmids were generated when a linearized plasmid (vector) containing an origin of replication was co-transformed with a DNA fragment (template) containing a homologous sequence. The influence of the position of the DSB in the vector was analyzed using templates which contain various genetic markers, non-homologous sequences and/or deletions relative to the vector. In all cases, when a DSB occurs within a marker, this marker is lost in the resulting plasmid, whereas markers flanked by homologous regions located in the vicinity of a DSB are transmitted. Insertions (deletions), substitutions and shuffling of genetic markers are possible by in vivo recombination using Ec and can be applied to plasmid constructions. It is shown that recombination can occur from both template ends or from one vector and one template end. A D-loop nuclease is suggested to participate in the resolution of the recombination intermediates  相似文献   

20.
D. Yang  A. S. Waldman 《Genetics》1992,132(4):1081-1093
We studied the effects of double-strand breaks on intramolecular extrachromosomal homologous recombination in mammalian cells. Pairs of defective herpes thymidine kinase (tk) sequences were introduced into mouse Ltk- cells on a DNA molecule that also contained a neo gene under control of the SV40 early promoter/enhancer. With the majority of the constructs used, gene conversions or double crossovers, but not single crossovers, were recoverable. DNA was linearized with various restriction enzymes prior to transfection. Recombination events producing a functional tk gene were monitored by selecting for tk-positive colonies. For double-strand breaks placed outside of the region of homology, maximal recombination frequencies were measured when a break placed the two tk sequences downstream from the SV40 early promoter/enhancer. We observed no relationship between recombination frequency and either the distance between a break and the tk sequences or the distance between the tk sequences. The quantitative effects of the breaks appeared to depend on the degree of homology between the tk sequences. We also observed that inverted repeats recombined as efficiently as direct repeats. The data indicated that the breaks influenced recombination indirectly, perhaps by affecting the binding of a factor(s) to the SV40 promoter region which in turn stimulated or inhibited recombination of the tk sequences. Taken together, we believe that our results provide strong evidence for the existence of a pathway for extrachromosomal homologous recombination in mammalian cells that is distinct from single-strand annealing. We discuss the possibility that intrachromosomal and extrachromosomal recombination have mechanisms in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号