首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of eight selected potentially pathogenic strains of Bacillus cereus was evaluated in a rich medium at different temperatures. No strain grew at 50°C; maximal growth-permissive temperatures were in the range 46–50°C for six strains and under 46°C for one strain. Faster growth occurred at 42°C. Growth may be delayed at 20°C, where the lag phase can reach 7 h. Furthermore at 20°C, cells generally show an aggregation immediately in the early exponential stage, except for two strains. Owing to this aggregation, growth is more difficult to estimate by turbidimetry at lower temperatures. These data describe the behaviour of type and field strains between 50° and 20°C and can help the prediction of shelf-life of potentially contaminated products.  相似文献   

2.
Analysis of protein synthesis in the rabbit reticulocyte lysate system revealed the existence of a temperature-sensitive step in chain initiation which became irreversibly inactivated in the incubation at 42 degrees C. This inactivation of initiation was accompanied by a marked reduction in formation of the 40 S ribosomal subunit - Met-tRNAf complex. Decreased protein synthesis and a decrease in formation of the 40 S complex were also evident in unfortified lysates which had been prewarmed at 42 degrees C prior to protein synthesis. Hemin did not protect such lysates. The addition of supernatant fraction of a fresh lysate did not promote recovery of the reduced protein synthesis by such prewarmed lysates. Moreover, the addition of supernatant fraction prewarmed at 42 degrees C in the presence of added hemin caused little inhibition of protein synthesis by fresh lysate. The results indicate that the supernatant fraction is not involved in the inactivation.  相似文献   

3.
When a reticulocyte lysate, supplemented with hemin, was warmed at 42 °C, its protein-synthesizing activity was greatly decreased. This was accompanied by the reduced formation of the 40 S·Met-tRNAf initiation complex. This complex preformed at 34 °C, however, was stable and combined with added globin mRNA and the 60 S ribosomal subunit to form the 80 S complex at the elevated temperature. When the ribosome-free supernatant fraction of lysates was warmed at 42 °C with hemin and then added to the fresh lysate system, it inhibited protein synthesis by decreasing the formation of the 40 S complex. This decrease in protein synthesis by warmed lysates or warmed supernatant could be overcome by high concentrations of GTP and cyclic AMP. This effect of GTP and cyclic AMP was antagonized by ATP. The results indicate that the inactivation of protein synthesis by the lysate warmed at 42 °C is due to the formation of an inhibitor in the supernatant. The ribosomal KCl extract prepared from the lysate that had been warmed at 34 °C and then incubated at this temperature for protein synthesis supported protein synthesis by the KCl-washed ribosome at both 34 and 42 °C. On the contrary, the extract from lysates that had been warmed at 42 °C and then incubated at 34 °C could not support protein synthesis at 42 °C, although it was almost equally as promotive as the control extract in supporting protein synthesis at 34 °C. The results indicate that the factor which can protect protein synthesis against inactivation at 42 °C is itself inactivated in lysates warmed at 42 °C. However, the activity of this extract to support formation of the ternary complex with Met-tRNAf and GTP was not reduced. Native 40 S ribosomal subunits isolated from lysates that had been warmed at 42 °C and then incubated for protein synthesis indicated that the quantity of subunits of density 1.40 g/cm3 in a CsCl density gradient were decreased while those of density 1.49 g/cm3 were increased. The factor-promoted binding of Met-tRNAf to the 40 S subunit of lower density from the warmed and unwarmed lysates was equal, suggesting that the ribosomal subunit was not inactivated. These results were discussed in terms of the action of the inhibitor formed in the supernatant at 42 °C, which may inactivate a ribosomal factor essential for protein synthesis initiation.  相似文献   

4.
Incubation of rabbit reticulocytes at 45 degrees C results in a prompt but reversible decrease in protein synthesis and a concomitant conversion of polyribosomes to smaller aggregates. These effects occur even in the presence of 100 micrometer hemin in the incubation medium. There is also inhibition of heme synthesis but this occurs at a later time than the effect on protein synthesis. The inhibtion of heme synthesis results from a decrease in activity of beta-aminolevulinic acid synthetase. This decrease of heme synthesis appears to be secondary to the inhibition of protein synthesis with resultant accumulation of intramitochondrial heme (which will decrease beta-aminolevulinic acid synthetase activity). An inhibitor of reticulocyte cell-free protein synthesis formed in the postribosomal supernatants of cells incubated at both 45 and 37 degrees C but not at 0 degrees C. No temporal or quantitative differences in the amount of this inhibitor from cells treated at either 37 or 45 degrees C was apparent. The inhibitor was not found in the fraction where the hemin-controlled repressor is isolated. It is concluded that heat inactivation of intact reticulocyte protein synthesis does not depend upon a decrease in heme synthesis, heme concentration or generation of the hemin-controlled repressor. Furthermore, it appears that the inhibitor formed in the post-ribosomal supernatant cannot be the sole cause of the heat inhibition of protein synthesis.  相似文献   

5.
Gallo SA  Puri A  Blumenthal R 《Biochemistry》2001,40(41):12231-12236
The onset of cell fusion mediated by HIV-1 IIIB Env is preceded by a lag phase of 15-20 min. Fusion mediated by the CD4-independent HIV-1 Env 8x, which is capable of interacting directly with CXCR4, proceeds with a greatly reduced lag phase. We probed the intermediate steps during the lag phase in HIV-1 IIIB Env-mediated fusion with Leu3-a, an inhibitor of attachment of gp120 to CD4, AMD3100, an inhibitor of attachment of gp120 to CXCR4, and C34, a synthetic peptide that interferes with the transition of gp41 to the fusion active state. Inhibitions of fusion as a function of time of addition of C34 and of AMD3100 were equivalent, indicating that engagement of gp120 by CXCR4 and formation of the gp41 six-helix bundle follow similar kinetics. The initial steps in fusion mediated by the CD4-independent Env 8x are too rapid for these inhibitors to interfere with. However, when 8x Env-expressing cells were incubated with target cells at 25 degrees C in the presence of AMD3100 or C34, prior to incubation at 37 degrees C, these inhibitors were capable of inhibiting 8x Env-mediated fusion. To further examine engagement of gp120 by CXCR4 and exposure of binding sites for C34, we have reversibly arrested the fusion reaction at 37 degrees C by adding cytochalasin B to the medium. We show that CXCR4 engagement and six-helix bundle formation only occur after the release of the cytochalasin arrest, indicating that a high degree of cooperativity is required to trigger the initial steps in HIV-1 Env-mediated fusion.  相似文献   

6.
The activity released from membrane fragments into the supernatant fraction of rat liver homogenate by Triton X-100 and forming 14CO2 from carboxyl-labeled S-adenosylmethionine (1) is not a true S-adenosylmethionine decarboxylase. It did not produce decarboxylated S-adenosylmethionine but was also able to use S-adenosylhomocysteine as a substrate. The formation of CO2 from these two substrates was absolutely dependent on the presence of cytosol proteins and low-molecular weight compounds and it accounted for 5 to 10% of the total S-adenosylmethionine degrading activity of the supernatant fraction. The reaction showed abn initial lag period and was inhibited by every intermediate of the transsulphuration pathway. It is concluded that the formation of CO2 from S-adenosylmethionine involves the demethylation-transsulphuration route from S-adenosylmethionine to α-ketobutyric acid which is finally decarboxylated.  相似文献   

7.
Thermophilic sulfate-reducing bacteria in cold marine sediment   总被引:3,自引:0,他引:3  
Abstract Sulfate reduction was measured with the 35SO42− -tracer technique in slurries of sediment from Aarhus Bay, Denmark, where seasonal temperatures range from 0° to 15°C. The incubations were made at temperatures from 0°C to 80°C in temperature increments of 2°C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4°C and 30°C, whereas the activity at 60°C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain P60, were isolated and characterized as D esulfotomaculum kuznetsovii . The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50°–70°C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic activity. The viable population of thermophilic sulfate-reducing bacteria and the density of their spores was determined in most probable number (MPN) dilutions. The density was 2.8·104 cells·.g−1 fresh sediment, and the enumerations suggested that they were all present as spores. This result agrees well with the observed lag period in sulfate reduction above 50°C. No environment with temperatures supporting the growth of these thermophiles is known in the region around Aarhus Bay.  相似文献   

8.
Spectrin and actin were isolated and their oligomeric state after association with hemin at various conditions was studied. Intact cytoskeletons were prepared by Triton X-100 extraction of red blood cells and incubated with hemin and their stability analyzed by the appearance of dissociated proteins in the supernatant. The cytoskeletons dissociated in a time, temperature and hemin concentration-dependent manner. Following 18 hours incubation in the presence of 0.3 mM hemin there was no dissociation at 4 degrees C, while at the same hemin concentration after 2 hours complete dissociation of the cytoskeletons occurred at 37 degrees C. Microscopy indicated that the cytoskeletons incubated with hemin lost their "cell like" shapes in a time dependent manner. Hemin applied to intact cells also caused dissociation of their cytoskeletons as judged by the failure to separate integer cytoskeletons from red cells treated with hemin. From hemin-induced dissociation profiles of separated actin, spectrin and whole cytoskeletons under various conditions, a mechanism of cytoskeleton breakdown was analyzed, as a release of band 4.1 in the first step which is followed by spectrin dimerization and eventually dissociation of the entire cytoskeletons.  相似文献   

9.
The growth kinetics of a virulence plasmid-bearing (P+) and a plasmid-cured (P−) strain of Yersinia enterocolitica serotype O:3 in pure and meat culture were investigated. Growth studies were carried out at 25 and 37 °C in supplemented phosphate-buffered saline, buffered peptone water , cefsulodin-irgasan-novobiocin broth base or supplemented broth base (CIN). The lag phase durations and growth rates under these conditions were determined by linear regression analysis. In pure culture, under most sets of equivalent conditions, P+ and P− strains had similar lag phase durations. However, under one set of conditions, i.e. CIN broth at 37 °C, the lag phase duration of the P+ strain was significantly longer than P−. In all but the most selective medium, P+ strains had slower growth rates than P− strains at 37 °C, probably due to the increased metabolic burden entailed in the maintenance of the virulence plasmid. In the most selective medium, i.e. CIN broth, P+ strains grew significantly faster than P−. This finding suggests that possession of virulence plasmid confers an enhanced ability to grow in the presence of selective agents. In meat cultures, both strains had longer lag phases than in equivalent pure cultures, with longer lag phases noted at 37 than at 25 °C. No significant differences were observed between the length of lag phases of P+ and P− strains in meat culture. Both strains of Y. enterocolitica displayed faster growth rates in meat cultures than in pure cultures, indicating that one or more components of meat enhanced the growth of this organism. The effects and interaction of incubation temperature, enrichment broth and meat on the growth kinetics of plasmid-bearing and plasmid-cured Y. enterocolitica strains are discussed.  相似文献   

10.
L A Weber  E R Feman  C Baglioni 《Biochemistry》1975,14(24):5315-5321
A cell free system programmed by endogenous mRNA and active in initiation of protein synthesis has been obtained from HeLa cells by adding 25-100 muM hemin to the medium used to homogenize the cells. Hemin stabilizes the initiation activity of the extract, which otherwise decays rapidly even at 0 degrees C. The role of hemin in promoting initiation has been examined by fractionating the extracts into ribosomes and postribosomal supernatant (S150). An extract prepared without hemin or the S150 obtained from this extract prepared without hemin or the S150 obtained from this extract inhibits protein synthesis of the extract containing hemin by about 30%. The ribosomes prepared from extracts containing hemin are active in initiation of protein synthesis, whereas the ribosomes obtained from the extracts prepared without hemin show little or no initiation. These results have suggested that addition of hemin prevents the formation of an inhibitor of initiation in the S150 and at the same time protects from inactivation an initiation factor associated with ribosomes or ribosomal subunits. Addition of 2 mM GTP to HeLa extracts stabilizes the initiation activity, though to a smaller degree than hemin. The effects of hemin and GTP are not additive, suggesting that they may act on the same target molecule, though possibly by different mechanisms. The mechanism of action of GTP is discussed in view of similar observations made in the rabbit reticulocyte cell free system.  相似文献   

11.
The conversion of arachidonic acid into 8,11,12-trihydroxyeicosatrienoic acid by rat lung high-speed supernatant has been resolved into two separate stages through ammonium sulfate precipitation. The first stage is catalysed by 0-30% ammonium sulfate fraction and converts arachidonic acid and 12-hydroperoxyeicosatetraenoic acid into an intermediate, X. X is subsequently utilized in the second stage by the fraction sedimented at 30-50% saturation in ammonium sulfate to form two isomeric 8,11,12-trihydroxyeicosatrienoic acids.  相似文献   

12.
Growth rates in vitro of Pseudomonas syringae and Xanthomonas pruni were measured over the temperature range 0–36 °C. The estimated temperature optimum for X. pruni was 31 °C, with a doubling time of 1.53 h. The estimated temperature optimum for P. syringae was 28 °C with a doubling time of 1.27 h, although analysis showed no significant difference in the doubling times over the range 23–33 °C, indicating an unusual plateau at the maximum rate of growth of this organism. P. syringae and related plant pathogenic Pseudomonas spp. grew well at low temperatures, but X. pruni did not. Cultures of P. syringae and X. pruni had a very short lag phase after their incubation temperature was changed from 4 °C to a temperature close to their optimum (29 °C). When the incubation temperature of these organisms was changed from 11.5–29 °C, X. pruni grew without a lag phase at the rate expected for the higher temperature. However, the initial growth rate of P. syringae at the higher temperature was significantly greater than that at which the organism subsequently developed. The ecological significance of these points is discussed. The usefulness of the Arrhenius coefficients as characteristics of these organisms is discussed.  相似文献   

13.
Freshly harvested seeds of Agrostemma githago L. do not germinate when they are imbibed at 20°C. The block is located in the embryo and is relased by dry storage at 20°C (after-ripening). Freshly harvested seeds complete only a small part of the processes that occur in after-ripened seeds during the lag phase prior to germination (radicle protrusion). After-ripening removed the block on lag phase processes much faster than the block on germination. This was shown both by direct determinations of the completion of lag phase processes and by measurements of the rate of axial protein synthesis, which approximately doubles when seeds are progressing through the lag phase. It is concluded that the percentage germination does not adequately reflect the extent to which the dormancy mechanism has been overcome.  相似文献   

14.
15.
Aims:  This study evaluated the effect of temperature (0–38°C) and water activity ( a w: 0·87–0·99) on the lag phase prior to germination and the percentage of germination over time for Monilinia laxa , Monilinia fructicola and Monilinia fructigena .
Methods and Results:  More than 80% of viable conidia germinated at 25°C and 0·99 a w within 2 h for M. fructicola and M. fructigena and 4 h for M. laxa . There was no germination at 38°C, and all three Monilinia spp. germinated at 0°C. At the lowest a w (0·87), none of the Monilinia spp. was able to germinate at any of the incubation temperatures studied. Whereas at 0·90 a w, conidia were only able to germinate at 15, 25 and 30°C for the three species studied, except for M. fructicola at 15°C. In contrast, at 0·95, 0·97 and 0·99 a w, germination occurred at all studied temperatures less 38°C. Generally, the lag phase was longer at low levels of a w (0·90–095), and differences were more evident as temperatures were far from the optimum (0–5°C).
Conclusions:  Germination and lag phase period were markedly influenced by temperature and a w, and in general when conditions of temperature and a w were suboptimal, the lag phase was longer and the percentage of germination was lower.
Significance and Impact of the Study:  Knowledge of the germination requirements of this fungus is important in order to understand their behaviour in natural situations and to provide baseline data required for the construction of new prediction models. Our study might be used to develop a predictive model to understand and control the disease caused by Monilinia spp.  相似文献   

16.
SUMMARY. The multiplication rate of Tetrahymena pyriformis HS in proteose peptone medium was measured at 12 temperatures between 18.4°C. and 36.6°C. At the temperature optimum, 32.5°C., the generation time is 2.25 hours. The upper lethal temperature lies between 36.6°C. and 38.0°C. Similarly, a study of Tetrahymena pyriformis GL revealed a temperature optimum for multiplication of 29°C. with a generation time of 3.70 hours. The upper lethal temperature falls between 34.6°C. and 35.4°C. At all temperatures employed the HS strain of organisms multiplies more rapidly than strain GL. Under identical conditions, the two strains have distinctly different growth optima, upper lethal temperatures and growth rates.
As measured by multiplication rate the readjustment to a sudden change in temperature (from 18.4°C. to 27.7°C.) is completed very rapidly, with an effective lag time of about 1 hour. Such a shift in temperature gives rise to a small degree of division synchrony during the first and second population doublings which follow. Subsequently, all traces of division synchrony are lost.  相似文献   

17.
Cell-free preparations from the unicellular green alga, Chlorella vulgaris, catalyze the conversion of glutamate to delta-aminolevulinate, which is the first committed step in heme and chlorophyll biosynthesis. Most activity remains in the supernatant fraction after centrifugation at 264,000g. Additional activity can be solubilized from the high-speed pellet by treatment with 0.5 M NaCl. After gel filtration through Sephadex G-25, the reaction catalyzed by the high-speed supernatant requires glutamate, ATP, Mg2+, and NADPH. Boiled extract is inactive. The pH optimum is between 7.8 and 7.9 and the temperature optimum is 30 degrees C. Concentrations required for half-maximal activity are 0.05 mM glutamate, 0.4 mM ATP, 6 mM MgCl2, and 0.4 mM NADPH or 0.7 mM NADH. The reaction requires no additional amino donor. Involvement of pyridoxal phosphate in the catalytic mechanism is suggested by sensitivity to pyridoxal antagonists; 50% inhibition is achieved with 5 microM gabaculine or 0.4 mM aminooxyacetate. Involvement of two or more enzymes is suggested by the nonlinear reaction rate dependence on protein concentration. Evidence for the involvement of an activated glutamate intermediate was obtained by product formation after sequential addition and removal of substrates, and by inhibition (80%) with 1 mM hydroxylamine. Protoheme inhibits the activity by 50% at 1.2 microM. Preincubation of the extract with ATP causes stimulation and/or stabilization of the activity compared to preincubation without ATP or no preincubation. In preparations obtained from C. vulgaris strain C-10, which requires light for greening, dark-grown cells yield one-third as much activity as 4-h-greened cells.  相似文献   

18.
Homo- and heterofermentative species of Lactobacillus have been isolated from sugary kefir grains. Most of the homofermentative strains fermented tagatose and aldonitol and presented 48–54% of homology with Lactobacillus paracasei ssp. paracasei NCDO 151 (ex Lactobacillus casei ). The two variants of a heterofermentative species, although fermenting arabinose, were related to Lactobacillus hilgardii NCDO 264 (type strain) with 88% of homology. One of them produced polysaccharide from sucrose at pH 4–8 and 30°C; the best glucose conversion into polysaccharide was obtained from 3% of sucrose (81–8%), and the maximum production occurred about 35 hours after the end of the log phase of growth, in MRS sucrose broth. Polysaccharide formation did not occur above 40°C, a temperature at which no growth was observed. The two variants were forming minicells by abnormal divisions.  相似文献   

19.
Phase intensity changes of individual germinating spores of Bacillus subtilis were determined by phase-contrast light microscopy and image analysis. Two germination phases were investigated. The length of the time period before a change in phase brightness was evident and the duration of the phase intensity change until a constant greylevel was maintained. The incubation temperature (37 and 20 °C) and heat activation (10 min at 65 °C) had a distinct effect on both phases. At 37 °C, spores of B. subtilis 604 started to show a decrease in brightness in l -alanine buffer after 3–39 min and needed 10–39 min to complete the phase change. At 20 °C, lag times of 10–100 min were observed and the spores needed 30–100 min to reach a constant greylevel. Heat activation and subsequently exposure to l -alanine buffer at 20 °C reduced the lag phase to 6–90 min and the phase change was finished after 30–60 min. Our results indicate enzymatic involvement before and during the phase intensity change of germinating spores.  相似文献   

20.
Aim:  The mechanisms of adaptation of Clostridium perfringens to high temperatures are not well understood. In this work, the involvement of extracellular compounds in protection to heat was determined.
Methods and Results:  Cells were grown in fluid thioglycollate medium or chicken broth. When mid-log phase was reached, they were heat-shocked at 50°C for 30 min. Then cultures were centrifuged and supernatants were transferred to nonshocked cells. Heat tolerance of these cells was performed at 55°C. Viable cells were determined. In some cases, supernatants were heated at 65°C or 100°C or treated with trypsin. Supernatants were fractionated and PAGE was made of fractions showing heat-protective activity. When C. perfringens was exposed to a heat shock at 50°C, extracellular factors were found in the culture supernatant that provided protection to cells not exposed to a heat shock. The extracellular factors were sensitive to heat and trypsin treatment suggesting a protein component. SDS-PAGE analysis of supernatant fractions from heat-treated cells revealed two induced proteins (56 and 125 kDa) that could be involved in heat tolerance.
Conclusion:  In this work, the presence and thermoprotective activity of extracellular factors produced by C. perfringens under a heat shock was demonstrated.
Significance and Impact of the Study:  The detection of thermoprotective extracellular factors of C . perfringens will aid in our understanding of the physiology of survival of C. perfringens in foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号