首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adverse effects of angiotensin II (Ang II) are primarily mediated through the Ang II type 1 receptor (AT1R). A silent polymorphism (+1166 A/C) in the human AT1R gene has been associated with cardiovascular disease, possibly as a result of enhanced AT(1)R activity. Because this polymorphism occurs in the 3'-untranslated region of the human AT1R gene, the biological importance of this mutation has always been questionable. Computer alignment demonstrated that the +1166 A/C polymorphism occurred in a cis-regulatory site, which is recognized by a specific microRNA (miRNA), miR-155. miRNAs are noncoding RNAs that silence gene expression by base-pairing with complementary sequences in the 3'-untranslated region of target RNAs. When the +1166 C-allele is present, base-pairing complementarity is interrupted, and the ability of miR-155 to interact with the cis-regulatory site is decreased. As a result, miR-155 no longer attenuates translation as efficiently as demonstrated by luciferase reporter and Ang II radioreceptor binding assays. In situ hybridization experiments demonstrated that mature miR-155 is abundantly expressed in the same cell types as the AT1R (e.g. endothelial and vascular smooth muscle). Finally, when human primary vascular smooth muscle cells were transfected with an antisense miR-155 inhibitor, endogenous human AT1R expression and Ang II-induced ERK1/2 activation were significantly increased. Taken together, our study demonstrates that the AT1R and miR-155 are co-expressed and that miR-155 translationally represses the expression of AT1R in vivo. Therefore, our study provides the first feasible biochemical mechanism by which the +1166 A/C polymorphism can lead to increased AT1R densities and possibly cardiovascular disease.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
MicroRNA(miRNA)是一类广泛存在于真核生物中的小分子非编码RNA,通过抑制靶基因的翻译过程或降解靶基因的mRNA,在转录后水平上调控基因表达。在昆虫中已报道了大量的miRNA,其中部分miRNA的功能得到了解析。在昆虫变态过程中,let-7, miR-100, miR-125, miR-34, miR-14, miR-8, miR-281和 miR-252-3p能够作用于保幼激素或蜕皮激素信号通路,影响昆虫蜕皮、化蛹或翅、足及神经系统的发育。在昆虫生殖阶段,bantam, miR-184和miR-275影响生殖干细胞的分化或卵子发生。本文在介绍miRNA生物合成和作用机制的基础上,重点对昆虫变态与生殖过程中miRNA的最新研究进展进行综述。  相似文献   

12.
《Cellular signalling》2014,26(5):933-941
The omega-3 polyunsaturated fatty acids (ω  3 fatty acids) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been reported to inhibit or delay the progression of cardiovascular diseases, including myocardial fibrosis. Recently we reported that angiotensin II (Ang II) promotes cardiac fibroblast (CF) migration by suppressing the MMP regulator reversion-inducing-cysteine-rich protein with Kazal motifs (RECK), through a mechanism dependent on AT1, ERK, and Sp1. Here we investigated the role of miR-21 in Ang II-mediated RECK suppression, and determined whether the ω  3 fatty acids reverse these effects. Ang II induced miR-21 expression in primary mouse cardiac fibroblasts (CFs) via ERK-dependent AP-1 and STAT3 activation, and while a miR-21 inhibitor reversed Ang II-induced RECK suppression, a miR-21 mimic inhibited both RECK expression and Ang II-induced CF migration. Moreover, Ang II suppressed the pro-apoptotic PTEN, and the ERK negative regulator Sprouty homologue 1 (SPRY1), but induced the metalloendopeptidase MMP2, all in a manner that was miR-21-dependent. Further, forced expression of PTEN inhibited Akt phosphorylation, Sp1 activation, and MMP2 induction. Notably, while both EPA and DHA reversed Ang II-mediated RECK suppression, DHA appeared to be more effective, and reversed Ang II-induced miR-21 expression, RECK suppression, MMP2 induction, and CF migration. These results indicate that Ang II-induced CF migration is differentially regulated by miR-21-mediated MMP induction and RECK suppression, and that DHA has the potential to upregulate RECK, and therefore may exert potential beneficial effects in cardiac fibrosis.  相似文献   

13.
Abnormal vascular smooth muscle cells proliferation is the pathophysiological basis of cardiovascular diseases, such as hypertension, atherosclerosis, and restenosis after angioplasty. Angiotensin II can induce abnormal proliferation of vascular smooth muscle cells, but the molecular mechanisms of this process remain unclear. Here, we explored the role and molecular mechanism of monocyte chemotactic protein-1, which mediated angiotensin II-induced proliferation of rat aortic smooth muscle cells. 1,000 nM angiotensin II could stimulate rat aortic smooth muscle cells' proliferation by angiotensin II type 1 receptor (AT(1)R). Simultaneously, angiotensin II increased monocyte chemotactic protein-1 expression and secretion in a dose-and time-dependent manner through activation of its receptor AT(1)R. Then, monocyte chemotactic protein-1 contributed to angiotensin II-induced cells proliferation by CCR2. Furthermore, we found that intracellular ERK and JNK signaling molecules were implicated in angiotensin II-stimulated monocyte chemotactic protein-1 expression and proliferation mediated by monocyte chemotactic protein-1. These results contribute to a better understanding effect on angiotensin II-induced proliferation of rat smooth muscle cells.  相似文献   

14.
微小RNA在自发性高血压大鼠主动脉的差异表达   总被引:4,自引:0,他引:4  
Xu CC  Han WQ  Xiao B  Li NN  Zhu DL  Gao PJ 《生理学报》2008,60(4):553-560
微小RNAs(microRNAs,miRNAs)是一类基因组编码、非蛋白质编码的小RNA,在转录后水平负性调节靶基因表达.本研究探讨miRNAs在自发性高血压大(spontaneously hypertensive rats,SHR)主动脉的表达特征及其与高血压的关系.取4、8、16和24周龄雄性SHR大鼠及同龄正常血压对照(Wistar-Kyoto,WKY)大鼠.MiRanda、TargetScan和PicTar用于候选miRNAs及靶基因预测分析.通过实时定量RT-PCR检测大鼠主动脉miR-1、miR-133a、miR-155及miR-208的表达,并进一步通过实时定量RT-PCR检测呈差异表达的miR-155和miR-208的预测靶基因mRNA表达.结果显示,SHR大鼠主动脉miR-155表达在4、8、24周时与同龄WKY大鼠无显著差异,但在16周时明显低于同龄WKY大鼠(P<0.05),且大鼠主动脉miR-155表达量与血压呈负相关(r=-0.525,P<0.05).MiR-208表达在4周龄时最高,随年龄增长明显下降(P<0.05),其表达水平与血压和年龄呈负相关(r=-0.400,P<0.05;r=-0.684,P<0.0001),但在SHR和WKY大鼠之间无显著差异.miR-1和miR-133a在各年龄组SHR和WKY大鼠间未呈现差异表达.MiR-155和miR-208表达与相应预测靶基因mRNA表达无显著负相关性.以上结果表明,miR-155表达在成年SHR大鼠主动脉明显低于WKY,并与血压呈负相关,提示miR-155可能参与高血压的发生发展,主动脉miR-155表达异常可能是SHR大鼠血压升高的原因之一.大鼠主动脉miR-208表达在幼年时最高,随年龄增长而明显下降,提示其可能与血管发育有关.  相似文献   

15.
16.
17.
18.
19.
Angiotensin II (Ang II) plays a profound regulatory effect on NADPH oxidase and the functional features of vascular adventitial fibroblasts, but its role in antioxidant enzyme defense remains unclear. This study investigated the effect of Ang II on expressions and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in adventitial fibroblasts and the possible mechanism involved. Ang II decreased the expression and activity of CAT in a dose- and time-dependent manner, but not that of SOD and GPx. The effects were abolished by the angiotensin II type 1 receptor (AT1R) blocker losartan and AT1R small-interfering RNA (siRNA). Incubation with polyethylene glycol-CAT prevented the Ang II-induced effects on reactive oxygen species (ROS) generation and myofibroblast differentiation. Moreover, Ang II rapidly induced phosphorylation of ERK1/2, which was reversed by losartan and AT1R siRNA. Pharmacological blockade of ERK1/2 improved Ang II-induced decrease in CAT protein expression. These in vitro results indicate that Ang II induces ERK1/2 activation, contributing to the downregulation of CAT as well as promoting oxidative stress and adventitial fibroblast phenotypic differentiation in an AT1R-mediated manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号