首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

2.
The docking and fusion of synaptic vesicles with the presynaptic plasma membrane require the interaction of the vesicle-associated membrane protein VAMP with the plasma membrane proteins syntaxin and SNAP-25. Both of these proteins behave as integral membrane proteins, although they are unusual in that they insert into membranes post-translationally. Whereas VAMP and syntaxin possess hydrophobic transmembrane domains, SNAP-25 does not, and it is widely believed that SNAP-25 traffics to and inserts into membranes by post-translational palmitoylation. In pulse-chase biosynthesis studies, we now show that SNAP-25 and syntaxin rapidly bind to each other while still in the cytosol of neuroendocrine and transfected heterologous cells. Cell fractionation studies revealed that cytosolic SNAP-25.syntaxin complexes then traffic to and insert into membranes. Furthermore, the association of SNAP-25 with membranes is dramatically enhanced by syntaxin, and the transmembrane domain of syntaxin is essential for this effect. Surprisingly, despite the importance of the SNAP-25 palmitoylation domain for membrane anchoring at steady state, removal of this domain did not inhibit the initial association of newly synthesized SNAP-25 with membranes in the presence of syntaxin. These data demonstrate that the initial attachment of newly synthesized SNAP-25 to membranes is a consequence of its association with syntaxin and that it is only after syntaxin-mediated membrane tethering that SNAP-25 is palmitoylated.  相似文献   

3.
The papillomavirus capsid mediates binding to the cell surface and passage of the virion to the perinuclear region during infection. To better understand how the virus traffics across the cell, we sought to identify cellular proteins that bind to the minor capsid protein L2. We have identified syntaxin 18 as a protein that interacts with bovine papillomavirus type 1 (BPV1) L2. Syntaxin 18 is a target membrane-associated soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (tSNARE) that resides in the endoplasmic reticulum (ER). The ectopic expression of FLAG-tagged syntaxin 18, which disrupts ER trafficking, blocked BPV1 pseudovirion infection. Furthermore, the expression of FLAG-syntaxin 18 prevented the passage of BPV1 pseudovirions to the perinuclear region that is consistent with the ER. Genetic studies identified a highly conserved L2 domain, DKILK, comprising residues 40 to 44 that mediated BPV1 trafficking through the ER during infection via an interaction with the tSNARE syntaxin 18. Mutations within the DKILK motif of L2 that did not significantly impact virion morphogenesis or binding at the cell surface prevented the L2 interaction with syntaxin 18 and disrupted BPV1 infection.  相似文献   

4.
Pombo I  Rivera J  Blank U 《FEBS letters》2003,550(1-3):144-148
Exocytosis of mast cell granules requires a vesicular- and plasma membrane-associated fusion machinery. We examined the distribution of SNARE membrane fusion and Munc18 accessory proteins in lipid rafts of RBL mast cells. SNAREs were found either excluded (syntaxin2), equally distributed between raft and non-raft fractions (syntaxin4, VAMP-8, VAMP-2), or selectively enriched in rafts (syntaxin3, SNAP-23). Syntaxin4-binding Munc18-3 was absent, whereas small amounts of the syntaxin3-interacting partner Munc18-2 consistently distributed into rafts. Cognate SNARE complexes of syntaxin3 with SNAP-23 and VAMP-8 were enriched in rafts, whereas Munc18-2/syntaxin3 complexes were excluded. This demonstrates a spatial separation between these two types of complexes and suggests that Munc18-2 acts in a step different from SNARE complex formation and fusion.  相似文献   

5.
Sec1/Munc18-like (SM) proteins functionally interact with SNARE proteins in vesicular fusion. Despite their high sequence conservation, structurally disparate binding modes for SM proteins with syntaxins have been observed. Several SM proteins appear to bind only to a short peptide present at the N terminus of syntaxin, designated the N-peptide, while Munc18a binds to a 'closed' conformation formed by the remaining portion of syntaxin 1a. Here, we show that the syntaxin 16 N-peptide binds to the SM protein Vps45, but the remainder of syntaxin 16 strongly enhances the affinity of the interaction. Likewise, the N-peptide of syntaxin 1a serves as a second binding site in the Munc18a/syntaxin 1a complex. When the syntaxin 1a N-peptide is bound to Munc18a, SNARE complex formation is blocked. Removal of the N-peptide enables binding of syntaxin 1a to its partner SNARE SNAP-25, while still bound to Munc18a. This suggests that Munc18a controls the accessibility of syntaxin 1a to its partners, a role that might be common to all SM proteins.  相似文献   

6.
Viruses may infect cells through clathrin-dependent, caveolin-dependent, or clathrin- and caveolin-independent endocytosis. Bovine papillomavirus type 1 (BPV1) entry into cells has been shown to occur by clathrin-dependent endocytosis, a pathway that involves the formation of clathrin-coated pits and fusion to early endosomes. Recently, it has been demonstrated that the closely related JC virus can enter cells in clathrin-coated vesicles and subsequently traffic to caveolae, the organelle where vesicles of the caveolin-dependent pathway deliver their cargo. In this study, we use immunofluorescence staining of BPV1 pseudovirions to show that BPV1 overlaps with the endosome marker EEA1 early during infection and later colocalizes with caveolin-1. We provide evidence through the colocalization of BPV1 with transferrin and cholera toxin B that BPVl trafficking may not be restricted to the clathrin-dependent pathway. Disrupting the entry of caveolar vesicles did not affect BPV1 infection; however, we show that blocking the caveolar pathway postentry results in a loss of BPV1 infection. These data indicate that BPV1 may enter by clathrin-mediated endocytosis and then utilize the caveolar pathway for infection, a pattern of trafficking that may explain the slow kinetics of BPV1 infection.  相似文献   

7.
Munc18–1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18–1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18–1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18–1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18–1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25–deficient mice are used. We conclude that Munc18–1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.  相似文献   

8.
Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved Habc domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the Habc domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin Habc domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Qbc configuration. We found that neither the linker nor the Qbc configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.  相似文献   

9.
Colony-stimulating factor 1 (CSF-1) is the main growth factor controlling the development of macrophages from myeloid progenitor cells. However, CSF-1 also regulates some of the key effector functions of macrophages (e.g., phagocytosis and cytokine secretion). The endosomal SNARE protein syntaxin 7 (Stx7) regulates vesicle trafficking events involved in phagocytosis and cytokine secretion. Therefore, we investigated the ability of CSF-1 to regulate Stx7. CSF-1 upregulated Stx7 expression in primary mouse macrophages; it also upregulated expression of its SNARE partners Vti1b and VAMP8 but not Stx8. Additionally, CSF-1 induced the rapid serine phosphorylation of Stx7 and enhanced its binding to Vti1b, Stx8, and VAMP8. Bioinformatics analysis and results from experiments with kinase inhibitors suggested the CSF-1-induced phosphorylation of Stx7 was mediated by protein kinase C and Akt in response to phosphatidylinositol 3-kinase activation. Based on mutagenesis studies, CSF-1 appeared to increase the binding of Stx7 to its SNARE partners by inducing the phosphorylation of serine residues in the Habc domain and/or “linker” region of Stx7. Thus, CSF-1 is a key regulator of Stx7 expression and function in macrophages. Furthermore, the effects of CSF-1 on Stx7 may provide a mechanism for the regulation of macrophage effector functions by CSF-1.  相似文献   

10.
Homologous recombination was examined in cells infected with herpes simplex virus type I. Circular and linear DNA with directly repeated sequences was introduced as recombination substrates into cells. Recombination was measured either by origin-dependent amplification of recombination products or by recombination-dependent expression of luciferase from a disrupted gene. Homologous recombination in baby hamster kidney cells converted linear DNA to circular templates for DNA replication and luciferase expression in the complete absence of virus. The products of homologous recombination were efficiently amplified by the viral replication apparatus. The efficiency of recombination was dependent on the structure of the substrate as well as the cell type. Linear DNA with the direct repeats at internal positions failed to recombine in Balb/c 3T3 cells and induced p53-dependent apoptosis. In contrast, linear DNA with directly repeated sequences precisely at the ends recombined and replicated in 3T3 cells. Homologous recombination in baby hamster kidney cells did not depend on the position of the repeated sequences. We conclude that homologous recombination is independent of viral gene functions and that it is likely to be carried out by cellular proteins. We suggest that homologous recombination between directly repeated sequences in the linear herpes simplex virus type 1 chromosome may help to avoid p53-dependent apoptosis and to promote viral DNA replication.  相似文献   

11.
Remm M  Remm A  Ustav M 《Journal of virology》1999,73(4):3062-3070
Papillomaviruses are small double-stranded DNA viruses that replicate episomally in the nuclei of infected cells. The full-length E1 protein of papillomaviruses is required for the replication of viral DNA. The viral mRNA from which the human papillomavirus type 18 E1 protein is expressed is not known. We demonstrate that in eukaryotic cells, the E1 protein is expressed from polycistronic mRNA containing E6, E7, and E1 open reading frames (ORFs). The translation of adjacent E7 and E1 ORFs is not associated; it is performed by separate populations of ribosomes. The translation of the downstream E1 gene is preceded by ribosome scanning. Scanning happens at least at the 5' end of the polycistronic mRNA and also approximately 100 bp in front of the E1 gene. Long areas in middle of the mRNA are bypassed by ribosomes, possibly by ribosomal "shunting." Inactivation of short minicistrons in the upstream area of the E1 gene did not change the expression level of the E1 gene.  相似文献   

12.
SNAREs are important components of the vesicle trafficking machinery in eukaryotic cells. In plants, SNAREs have been found to play a variety of roles in the development and physiology of the whole organism. Here, we describe the identification and characterization of a novel plant-specific SNARE, NPSN11, a member of a closely related small gene family in Arabidopsis. NSPN11 is highly expressed in actively dividing cells. In a subcellular fractionation experiment, NSPN11 cofractionates with the cytokinesis-specific syntaxin, KNOLLE, which is required for the formation of the cell plate. By immunofluorescence microscopy, NSPN11 was localized to the cell plate in dividing cells. Consistent with the localization studies, NSPN11 was found to interact with KNOLLE. Our results suggest that NPSN11 is another component of the membrane trafficking and fusion machinery involved in cell plate formation.  相似文献   

13.
Papillomavirus E1 protein is the replication initiator that recognizes and binds to the viral origin and initiates DNA strand separation through its ATP-dependent helicase activity. The E1 protein also functions in viral DNA replication by recruiting several cellular proteins to the origin, including host DNA polymerase alpha and replication protein A. To identify other cellular proteins that interact with bovine papillomavirus E1, an HeLa cDNA library was screened using a yeast two-hybrid assay. The host cell sumoylating enzyme, Ubc9, was found to interact specifically with E1 both in vitro and in vivo. Mapping studies localized critical E1 sequences for interaction to amino acids 315-459 and strongly implicated leucine 420 as critical for E1.Ubc9 complex formation. In addition to binding E1, Ubc9 catalyzed the covalent linkage of the ubiquitin-like protein, SUMO-1, to E1. An E1 mutant unable to bind Ubc9 showed normal intracellular stability, but was impaired for intranuclear distribution. Failure to accumulate in appropriate nuclear subdomains may account for the previously demonstrated replication defect of a human papillomavirus 16 E1 protein that was also unable to bind Ubc9 and suggests that sumoylation is a functionally important modification with regulatory implications for papillomavirus replication.  相似文献   

14.
Although some of the principles of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function are well understood, remarkably little detail is known about sec1/munc18 (SM) protein function and its relationship to SNAREs. Popular models of SM protein function hold that these proteins promote or maintain an open and/or monomeric pool of syntaxin molecules available for SNARE complex formation. To address the functional relationship of the mammalian endoplasmic reticulum/Golgi SM protein rsly1 and its SNARE binding partner syntaxin 5, we produced a conformation-specific monoclonal antibody that binds only the available, but not the cis-SNARE-complexed nor intramolecularly closed form of syntaxin 5. Immunostaining experiments demonstrated that syntaxin 5 SNARE motif availability is nonuniformly distributed and focally regulated. In vitro endoplasmic reticulum-to-Golgi transport assays revealed that rsly1 was acutely required for transport, and that binding to syntaxin 5 was absolutely required for its function. Finally, manipulation of rsly1-syntaxin 5 interactions in vivo revealed that they had remarkably little impact on the pool of available syntaxin 5 SNARE motif. Our results argue that although rsly1 does not seem to regulate the availability of syntaxin 5, its function is intimately associated with syntaxin binding, perhaps promoting a later step in SNARE complex formation or function.  相似文献   

15.
Papillomavirus DNA replication occurs in the nucleus of infected cells and requires the viral E1 protein, which enters the nuclei of host epithelial cells and carries out enzymatic functions required for the initiation of viral DNA replication. In this study, we investigated the pathway and regulation of the nuclear import of the E1 protein from bovine papillomavirus type 1 (BPV1). Using an in vitro binding assay, we determined that the E1 protein interacted with importins alpha3, alpha4, and alpha5 via its nuclear localization signal (NLS) sequence. In agreement with this result, purified E1 protein was effectively imported into the nucleus of digitonin-permeabilized HeLa cells after incubation with importin alpha3, alpha4, or alpha5 and other necessary import factors. We also observed that in vitro binding of E1 protein to all three alpha importins was significantly decreased by the introduction of pseudophosphorylation mutations in the NLS region. Consistent with the binding defect, pseudophosphorylated E1 protein failed to enter the nucleus of digitonin-permeabilized HeLa cells in vitro. Likewise, the pseudophosphorylation mutant showed aberrant intracellular localization in vivo and accumulated primarily on the nuclear envelope in transfected HeLa cells, while the corresponding alanine replacement mutant displayed the same cellular location pattern as wild-type E1 protein. Collectively, our data demonstrate that BPV1 E1 protein can be transported into the nucleus by more than one importin alpha and suggest that E1 phosphorylation by host cell kinases plays a regulatory role in modulating E1 nucleocytoplasmic localization. This phosphoregulation of nuclear E1 protein uptake may contribute to the coordination of viral replication with keratinocyte proliferation and differentiation.  相似文献   

16.
In the process of insulin-stimulated GLUT4 vesicle exocytosis, Munc18c has been proposed to control SNARE complex formation by inactivating syntaxin 4 in a self-associated conformation. Using in vivo fluorescence resonance energy transfer in 3T3L1 adipocytes, co-immunoprecipitation, and in vitro binding assays, we provide data to indicate that Munc18c also associates with nearly equal affinity to a mutant of syntaxin 4 in a constitutively open (unfolded) state (L173A/E174A; LE). To bind to the open conformation of syntaxin 4, we found that Munc18c requires an interaction with the N terminus of syntaxin 4, which resembles Sly1 interaction with the N terminus of ER/Golgi syntaxins. However, both N and C termini of syntaxin 4 are required for Munc18c binding, since a mutation in the syntaxin 4 SNARE domain (I241A) reduces the interaction, irrespective of syntaxin 4 conformation. Using an optical reporter for syntaxin 4-SNARE pairings in vivo, we demonstrate that Munc18c blocks recruitment of SNAP23 to wild type syntaxin 4 yet associates with syntaxin 4LE-SNAP23 Q-SNARE complexes. Fluorescent imaging of GLUT4 vesicles in 3T3L1 adipocytes revealed that syntaxin 4LE expressed with Munc18c bypasses the requirement of insulin for GLUT4 vesicle plasma membrane docking. This effect was attenuated by reducing the Munc18c-syntaxin 4LE interaction with the I241A mutation, indicating that Munc18c facilitates vesicle docking. Therefore, in contradiction to previous models, our data indicates that the conformational "opening" of syntaxin 4 rather than the dissociation of Munc18c is the critical event required for GLUT4 vesicle docking.  相似文献   

17.
In the plasma membrane, syntaxin 1 and syntaxin 4 clusters define sites at which secretory granules and caveolae fuse, respectively. It is widely believed that lipid phases are mandatory for cluster formation, as cluster integrity depends on cholesterol. Here we report that the native lipid environment is not sufficient for correct syntaxin 1 clustering and that additional cytoplasmic protein-protein interactions, primarily involving the SNARE motif, are required. Apparently no specific cofactors are needed because i), clusters form equally well in nonneuronal cells, and ii), as revealed by nanoscale subdiffraction resolution provided by STED microscopy, the number of clusters directly depends on the syntaxin 1 concentration. For syntaxin 4 clustering the N-terminal domain and the linker region are also dispensable. Moreover, clustering is specific because in both cluster types syntaxins mutually exclude one another at endogenous levels. We suggest that the SNARE motifs of syntaxin 1 and 4 mediate specific syntaxin clustering by homooligomerization, thereby spatially separating sites for different biological activities. Thus, syntaxin clustering represents a mechanism of membrane patterning that is based on protein-protein interactions.  相似文献   

18.
19.
The endoplasmic reticulum (ER) is thought to play an important structural and functional role in phagocytosis. According to this model, direct membrane fusion between the ER and the plasma or phagosomal membrane must precede further invagination, but the exact mechanisms remain elusive. Here, we investigated whether various ER-localized SNARE proteins are involved in this fusion process. When phagosomes were isolated from murine J774 macrophages, we found that ER-localized SNARE proteins (syntaxin 18, D12, and Sec22b) were significantly enriched in the phagosomes. Fluorescence and immuno-EM analyses confirmed the localization of syntaxin 18 in the phagosomal membranes of J774 cells stably expressing this protein tagged to a GFP variant. To examine whether these SNARE proteins are required for phagocytosis, we generated 293T cells stably expressing the Fc gamma receptor, in which phagocytosis occurs in an IgG-mediated manner. Expression in these cells of dominant-negative mutants of syntaxin 18 or D12 lacking the transmembrane domain, but not a Sec22b mutant, impaired phagocytosis. Syntaxin 18 small interfering RNA (siRNA) selectively decreased the efficiency of phagocytosis, and the rate of phagocytosis was markedly enhanced by stable overexpression of syntaxin 18 in J774 cells. Therefore, we conclude that syntaxin 18 is involved in ER-mediated phagocytosis, presumably by regulating the specific and direct fusion of the ER and plasma or phagosomal membranes.  相似文献   

20.
The human papillomavirus (HPV) 18 L1 gene, which encodes the L1 major capsid protein, was isolated from a female patient in Pusan, Korea Republic and was cloned into pGEX-4T-1 vector. The HPV-18L1 gene was expressed in Escherichia coli as a fusion protein with a glutathione-S-transferase (GST) tag. The soluble recombinant fusion protein, GST-18 L1 fusion, was isolated to high purity. HPV-18 L1 was purified from the GST-18 L1 fusant after biotinylated thrombin cleavage, and then the treated thrombin was removed serially using streptavidin conjugated resin. The purified HPV-18 L1 was confirmed by western blotting using a rabbit anti-denatured papillomavirus polyclonal antibody. The virus-like particles (VLP) from the purified full-length 18 L1 protein without any extra amino acid sequences was observed through the analysis of the electron microscope. This is the first study to report the expression and purification of HPV-18 L1 in E. coli. This expression and purification system offers a simple method of expressing and purifying HPV L1 protein, and could potentially be an effective route for the development and manufacturing of highly purified HPV-18 L1-based cervical cancer vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号