首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sladek F 《Molecular cell》2002,10(2):219-221
Published online this week in Structure, Wisely et al. present a high-resolution X-ray crystallographic structure of the ligand binding domain of human hepatocyte nuclear factor 4 gamma (HNF4gamma). They find fatty acids filling the ligand binding pocket of this receptor long considered an orphan, but these "ligands" appear to be locked into the protein and not readily amenable to exchange. Not only does this present a new paradigm for nuclear receptors but it also provides new insights into their evolutionary origins.  相似文献   

3.
HNF4 alpha is an orphan member of the nuclear receptor family with prominent functions in liver, gut, kidney and pancreatic beta cells. We have solved the x-ray crystal structure of the HNF4 alpha ligand binding domain, which adopts a canonical fold. Two conformational states are present within each homodimer: an open form with alpha helix 12 (alpha 12) extended and collinear with alpha 10 and a closed form with alpha 12 folded against the body of the domain. Although the protein was crystallized without added ligands, the ligand binding pockets of both closed and open forms contain fatty acids. The carboxylic acid headgroup of the fatty acid ion pairs with the guanidinium group of Arg(226) at one end of the ligand binding pocket, while the aliphatic chain fills a long, narrow channel that is lined with hydrophobic residues. These findings suggest that fatty acids are endogenous ligands for HNF4 alpha and establish a framework for understanding how HNF4 alpha activity is enhanced by ligand binding and diminished by MODY1 mutations.  相似文献   

4.
5.
6.
7.
8.
9.
The retinoid-X receptor (RXR) is a ligand activated nuclear receptor that is the heterodimer partner for many class II nuclear receptors. Previously identified natural ligands for this receptor include 9-cis retinoic acid (9cRA), docosahexaenoic acid, and phytanic acid. Our studies were performed to determine if there are any unidentified, physiologically important RXR ligands. Agonists for RXR were purified from rat heart and testes lipid extracts with the use of a cell-based reporter assay to monitor RXR activation. Purified active fractions contained a variety of unsaturated fatty acids and components were quantified by gas-liquid chromatography of derivatized samples. The corresponding fatty acid standards elicited a similar response in the reporter cell assay. Competition binding analysis revealed that the active fatty acids compete with [3H]9cRA for binding to RXR. Non-esterified fatty acids were analyzed from lipid extracts of isolated heart and testes nuclei and endogenous concentrations were found to be within the range of their determined binding affinities. Our studies reveal tissue dependent profiles of RXR agonists and support the idea of unsaturated fatty acids as physiological ligands of RXR.  相似文献   

10.
Unesterified long-chain fatty acids strongly inhibited thyroid hormone (T3) binding to nuclear receptors extracted from rat liver, kidney, spleen, brain, testis and heart. Oleic acid was the most potent inhibitor, attaining 50% inhibition at 2.8 microM. Oleic acid similarly inhibited the partially purified receptor and enhanced dissociation of the preformed T3-receptor complex. The fatty acid acted in a soluble form and in a competitive manner for the T3-binding sites, thereby reducing the affinity of the receptor for T3. The affinity of the receptor for oleic acid (Ki) was 1.0 microM. In HTC rat hepatoma cells in culture, fatty acids added to the medium reached the nucleus and inhibited nuclear T3 binding; oleic acid being the most potent. T3 binding of the cells was reversibly restored in fresh medium free of added fatty acids. Oleic acid did not affect all the T3-binding sites in the HTC cells: one form (80%) was inhibited and the other was not and these two forms were commonly present in all rat tissues examined. Thus, fatty acids inhibited the solubilized nuclear receptor as well as a class of nuclear T3-binding sites in cells in culture.  相似文献   

11.
12.
13.
Hepatocyte nuclear factor 1alpha (HNF1alpha)-null mice have enlarged fatty livers and alterations in the expression of genes encoding enzymes involved in the synthesis, catabolism, and transport of fatty acids. Elevations in the expression of genes encoding fatty acid synthetic enzymes (fatty acid synthase and acyl-CoA carboxylase) and peroxisomal beta-oxidation enzymes (CYP4A3, bifunctional enzyme, and thiolase) were observed in the livers of HNF1alpha-null mice, whereas hepatic mitochondrial beta-oxidation gene (medium and short chain acyl-CoA dehydrogenase) expression levels remain unchanged relative to HNF1alpha-heterozygous controls. An elevation in the levels of fatty acid transporter gene expression was also observed. In contrast, there was a marked reduction of liver fatty acid-binding protein (l-FABP) gene expression in the livers of HNF1alpha-null mice. Isolation and sequence analysis of the 5'-flanking region of the mouse l-FABP gene revealed the presence of two HNF1alpha regulatory elements. The results of transient transfection studies indicate that HNF1alpha is required to trans-activate the expression of the l-FABP promoter. Taken together, these data define a critical role for HNF1alpha in the pathogenesis of a phenotype marked by fatty infiltration of the liver and in the regulation of the l-FABP gene, the expression of which may have a direct impact on the maintenance of fatty acid homeostasis.  相似文献   

14.
15.
Arachidonic acid (20:4) and other cis-unsaturated fatty acids exert direct effects on a variety of cells, effects that do not depend on the metabolism of fatty acids via cyclooxygenase or lipoxygenase pathways. In these studies arachidonic acid and other cis-unsaturated fatty acids (but not trans-unsaturated or saturated fatty acids) increased the specific binding of the nonhydrolyzable analog of GTP, [35S]GTP gamma S, to purified neutrophil membrane preparations and elicited superoxide anion generation from intact neutrophils. There was a positive correlation (r = 0.70) between the capacity of fatty acids to increase nucleotide binding and to elicit the respiratory burst. Scatchard plot analysis of binding at equilibrium demonstrated an increase in the number of available GTP binding sites in the presence of 50 microM arachidonic acid. Nonsteroidal antiinflammatory agents interfered with the arachidonic acid effect on [35S]GTP gamma S binding. ADP-ribosylation of the pertussis toxin substrate Gi alpha within the plasmalemma-reduced specific [35S]GTP gamma S binding and blocked arachidonate-dependent enhancement of binding. Moreover, pertussis toxin treatment of intact neutrophils inhibited arachidonic acid-induced superoxide anion generation. The data indicate that arachidonic acid directly activates a GTP binding protein in the neutrophil plasma membrane and may thereby act as a second messenger in signal transduction.  相似文献   

16.
17.
18.
19.
The cytosolic acyl-coenzyme A thioesterase I (Acot1) is an enzyme that hydrolyzes long-chain acyl-CoAs of C(12)-C(20)-CoA in chain length to the free fatty acid and CoA. Acot1 was shown previously to be strongly upregulated at the mRNA and protein level in rodents by fibrates. In this study, we show that Acot1 mRNA levels were increased by 90-fold in liver by treatment with Wy-14,643 and that Acot1 mRNA was also increased by 15-fold in the liver of hepatocyte nuclear factor 4alpha (HNF4alpha) knockout animals. Our study identified a direct repeat 1 (DR1) located in the Acot1 gene promoter in mouse, which binds the peroxisome proliferator-activated receptor alpha (PPARalpha) and HNF4alpha. Chromatin immunoprecipitation (ChIP) assay showed that the identified DR1 bound PPARalpha/retinoid X receptor alpha (RXRalpha) and HNF4alpha, whereas the binding in ChIP was abrogated in the PPARalpha and HNF4alpha knockout mouse models. Reporter gene assays showed activation of the Acot1 promoter in cells by the PPARalpha agonist Wy-14,643 after cotransfection with PPARalpha/RXRalpha. However, transfection with a plasmid containing HNF4alpha also resulted in an increase in promoter activity. Together, these data show that Acot1 is under regulation by an interplay between HNF4alpha and PPARalpha.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号