首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease of carbohydrate metabolism. HFI patients exhibit a deficiency of fructose 1-phosphate aldolase (aldolase B), the isozyme expressed in tissues that metabolize fructose. The eight protein-coding exons, including splicing signals, of the aldolase B gene from one HFI patient were amplified by PCR. Dot-blot hybridization of the amplified DNA with allele-specific oligonucleotide (ASO) probes revealed a previously described A149P mutation in one allele from the proband. The mutation in the other allele was identified by direct sequencing of the double-stranded PCR-amplified material from the proband. The nucleotide sequence of exon 9 revealed a 7-base deletion/1-base insertion (delta 7 + 1) at the 3' splice site of intron 8 in one allele. This mutation was confirmed by cloning PCR-amplified exon 9 of the proband and determining the sequence of each allele separately. ASO analysis of 18 family members confirmed the Mendelian inheritance of both mutant alleles. The implications of this unique splice-site mutation in HFI are discussed.  相似文献   

5.
A few nucleotide sites of nuclear exons that flank introns are often conserved. A hypothesis has suggested that these sites, called "proto-splice sites," are remnants of recognition signals for the insertion of introns in the early evolution of eukaryotic genes. This notion of proto-splice sites has been an important basis for the insertional theory of introns. This hypothesis predicts that the distribution of proto-splice sites would determine the distribution of intron phases, because the positions of introns are just a subset of the proto-splice sites. We previously tested this prediction by examining the proportions of the phases of proto-splice sites, revealing nothing in these proportion distributions similar to observed proportions of intron phases. Here, we provide a second independent test of the proto-splice site hypothesis, with regard to its prediction that the proto-splice sites would mimic intron phase correlations, using a CDS database we created from GenBank. We tested four hypothetical proto-splice sites G / G, AG / G, AG / GT, and C/AAG / R. Interestingly, while G / G and AG / GT site phase distributions are not consistent with actual introns, we observed that AG / G and C/AAG / R sites have a symmetric phase excess. However, the patterns of the excess are quite different from the actual intron phase distribution. In addition, particular amino acid repeats in proteins were found to partially contribute to the excess of symmetry at these two types of sites. The phase associations of all four sites are significantly different from those of intron phases. Furthermore, a general model of intron insertion into proto-splice sites was simulated by Monte Carlo simulation to investigate the probability that the random insertion of introns into AG / G and C/AAG / R sites could generate the observed intron phase distribution. The simulation showed that (1) no observed correlation of intron phases was statistically consistent with the phase distribution of proto-splice sites in the simulated virtual genes; (2) most conservatively, no simulation in 10,000 Monte Carlo experiments gave a pattern with an excess of symmetric (1, 1) exons larger than those of (0, 0) and (2, 2), a major statistical feature of intron phase distribution that is consistent with the directly observed cases of exon shuffling. Thus, these results reject the null hypothesis that introns are randomly inserted into preexisting proto-splice sites, as suggested by the insertional theory of introns.  相似文献   

6.
The chlL gene product is involved in the light-independent synthesis of chlorophyll in photosynthetic bacteria, green algae and non-flowering plants. The chloroplast genome of Chlorella vulgaris strain C-27 contains the first example of a split chlL gene, which is interrupted by a 951?bp group I intron in the coding region. In vitro synthesized pre-mRNA containing the entire intron and parts of the flanking exon sequences is able to efficiently self-splice in vitro in the presence of a divalent and a monovalent cation and GTP, to yield the ligated exons and other splicing intermediates characteristic of self-splicing group I introns. The 5′ and 3′ splice sites were confirmed by cDNA sequencing and the products of the splicing reaction were characterized by primer extension analysis. The absence of a significant ORF in the long P9 region (522?nt), separating the catalytic core from the 3′ splice site, makes this intron different from the other known examples of group I introns. Guanosine-mediated attack at the 3′ splice site and the presence of G-exchange reaction sites internal to the intron are some other properties demonstrated for the first time by an intron of a protein-coding plastid gene.  相似文献   

7.
Cloned cDNAs encoding mannose-binding proteins isolated from rat liver have been used to isolate one of the genes encoding this group of proteins. This gene, which encodes the minor form of binding protein (designated MBP-A), has been characterized by sequence analysis. The protein-coding portion of the mRNA for the MBP-A is encoded by four exons separated by three introns. The NH2-terminal, collagen-like portion of the protein is encoded by the first two exons. These exons resemble the exons found in the genes for nonfibrillar collagens in that the intron which divides them is inserted between the first two bases of a glycine codon and the exons do not have the 54- or 108-base pair lengths characteristic of fibrillar collagen genes. The carbohydrate-binding portion of MBP-A is encoded by the remaining two exons. This portion of the protein is homologous to the carbohydrate-recognition domain of the hepatic asialoglycoprotein receptor, which is encoded by four exons. It appears that the three COOH-terminal exons of the asialoglycoprotein receptor gene have been fused into a single exon in the MBP-A gene. The organization of the MBP-A gene is very similar to the arrangement of the gene encoding the highly homologous pulmonary surfactant apoprotein, although one of the intron positions is shifted by a single amino acid. The 3' end of a mannose-binding protein pseudogene has also been characterized.  相似文献   

8.
How exon-intron structures of eukaryotic genes evolved under various evolutionary forces remains unknown. The phases of spliceosomal introns (the placement of introns with respect to reading frame) provide an opportunity to approach this question. When a large number of nuclear introns in protein-coding genes were analyzed, it was found that most introns were of phase 0, which keeps codons intact. We found that the phase distribution of spliceosomal introns is strongly correlated with the sequence conservation of splice signals in exons; the relatively underrepresented phase 2 introns are associated with the lowest conservation, the relatively overrepresented phase 0 introns display the highest conservation, and phase 1 introns are intermediate. Given the detrimental effect of mutations in exon sequences near splice sites as found in molecular experiments, the underrepresentation of phase 2 introns may be the result of deleterious-mutation-driven intron loss, suggesting a possible genetic mechanism for the evolution of intron-exon structures.  相似文献   

9.
10.
It has been previously observed that the intrinsically weak variant GC donor sites, in order to be recognized by the U2-type spliceosome, possess strong consensus sequences maximized for base pair formation with U1 and U5/U6 snRNAs. However, variability in signal strength is a fundamental mechanism for splice site selection in alternative splicing. Here we report human alternative GC-AG introns (for the first time from any species), and show that while constitutive GC-AG introns do possess strong signals at their donor sites, a large subset of alternative GC-AG introns possess weak consensus sequences at their donor sites. Surprisingly, this subset of alternative isoforms shows strong consensus at acceptor exon positions 1 and 2. The improved consensus at the acceptor exon can facilitate a strong interaction with U5 snRNA, which tethers the two exons for ligation during the second step of splicing. Further, these isoforms nearly always possess alternative acceptor sites and exhibit particularly weak polypyrimidine tracts characteristic of AG-dependent introns. The acceptor exon nucleotides are part of the consensus required for the U2AF35-mediated recognition of AG in such introns. Such improved consensus at acceptor exons is not found in either normal or alternative GT-AG introns having weak donor sites or weak polypyrimidine tracts. The changes probably reflect mechanisms that allow GC-AG alternative intron isoforms to cope with two conflicting requirements, namely an apparent need for differential splice strength to direct the choice of alternative sites and a need for improved donor signals to compensate for the central mismatch base pair (C-A) in the RNA duplex of U1 snRNA and the pre-mRNA. The other important findings include (i) one in every twenty alternative introns is a GC-AG intron, and (ii) three of every five observed GC-AG introns are alternative isoforms.  相似文献   

11.
Structure and sequence of the human alpha-L-iduronidase gene.   总被引:5,自引:0,他引:5  
H S Scott  X H Guo  J J Hopwood  C P Morris 《Genomics》1992,13(4):1311-1313
In humans, a deficiency of the lysosomal hydrolase alpha-L-iduronidase (IDUA;EC 3.2.1.76) results in the lysosomal storage of the glycosaminoglycans heparan sulfate and dermatan sulfate, thereby causing the lysosomal storage disorder mucopolysaccharidosis type I. The gene for IDUA is split into 14 exons spanning approximately 19 kb. We report the sequence of two non-contiguous segments of the IDUA gene, one 1.8-kb segment containing exons 1 and 2 and surrounding sequences and a second segment of 4.5 kb containing the last 12 exons. The potential promoter for IDUA has only GC box type consensus sequences consistent with a housekeeping promoter and is bounded by an Alu repeat sequence. The first two exons of IDUA are separated by an intron of 566 bp, then there is a large intron of approximately 13 kb, and the last 12 exons are clustered within 4.5 kb. No consensus polyadenylation signal was found in the 3' untranslated region, although two variant polyadenylation signals are proposed.  相似文献   

12.
13.
Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5' untranslated regions (UTRs), and investigate correlations between this class of splice sites and other features found in the adjacent exons and introns. By restricting the training of neural network algorithms to 'pure' UTRs (not extending partially into protein coding regions), we for the first time investigate the predictive power of the splicing signal proper, in contrast to conventional splice site prediction, which typically relies on the change in sequence at the transition from protein coding to non-coding. By doing so, the algorithms were able to pick up subtler splicing signals that were otherwise masked by 'coding' noise, thus enhancing significantly the prediction of 5' UTR splice sites. For example, the non-coding splice site predicting networks pick up compositional and positional bias in the 3' ends of non-coding exons and 5' non-coding intron ends, where cytosine and guanine are over-represented. This compositional bias at the true UTR donor sites is also visible in the synaptic weights of the neural networks trained to identify UTR donor sites. Conventional splice site prediction methods perform poorly in UTRs because the reading frame pattern is absent. The NetUTR method presented here performs 2-3-fold better compared with NetGene2 and GenScan in 5' UTRs. We also tested the 5' UTR trained method on protein coding regions, and discovered, surprisingly, that it works quite well (although it cannot compete with NetGene2). This indicates that the local splicing pattern in UTRs and coding regions is largely the same. The NetUTR method is made publicly available at www.cbs.dtu.dk/services/NetUTR.  相似文献   

14.
15.
ThechiL gene product is involved in the light-independent synthesis of chlorophyll in photosynthetic bacteria, green algae and non-flowering plants. The chloroplast genome ofChlorella vulgaris strain C-27 contains the first example of a splitchiL gene, which is interrupted by a 951 bp group I intron in the coding region. In vitro synthesized pre-mRNA containing the entire intron and parts of the flanking exon sequences is able to efficiently self-splice in vitro in the presence of a divalent and a monovalent cation and GTP, to yield the ligated exons and other splicing intermediates characteristic of self-splicing group I introns. The 5 and 3 splice sites were confirmed by cDNA sequencing and the products of the splicing reaction were characterized by primer extension analysis. The absence of a significant ORF in the long P9 region (522 nt), separating the catalytic core from the 3 splice site, makes this intron different from the other known examples of group I introns. Guanosine-mediated attack at the 3 splice site and the presence of G-exchange reaction sites internal to the intron are some other properties demonstrated for the first time by an intron of a protein-coding plastid gene.  相似文献   

16.
This study reports the isolation and characterization of the entire proopiomelanocortin (POMC) gene of the amphibian Xenopus laevis. The Xenopus POMC gene consists of three exons of which the main exon 3 codes for all of the bioactive domains of the precursor protein. Intron A (2.6 kb) separates the segments encoding the 5'-untranslated mRNA region and intron B (2.5 kb) interrupts the protein-coding sequence near the signal peptide coding region. In that this structural organization of the Xenopus POMC gene is similar to those of the mammalian genes, apparently the POMC gene has been remarkably stable during 350 million years of vertebrate evolution. A comparative analysis of the 5'-flanking sequences of the Xenopus and mammalian POMC genes reveals the presence of several conserved regions. One of these regions is homologous with sequences located upstream of the capping sites of other glucocorticoid-regulated genes and another region contains a segment reminiscent of a viral enhancer consensus sequence.  相似文献   

17.
18.
In humans, a deficiency of the lysosomal hydrolase α- -iduronidase (IDUA; EC 3.2.1.76) results in the lysosomal storage of the glycosaminoglycans heparan sulfate and dermatan sulfate, thereby causing the lysosomal storage disorder mucopolysaccharidosis type I. The gene for IDUA is split into 14 exons spanning approximately 19 kb. We report the sequence of two noncontiguous segments of the IDUA gene, one 1.8-kb segment containing exons 1 and 2 and surrounding sequences and a second segment of 4.5 kb containing the last 12 exons. The potential promoter for IDUA has only GC box type consensus sequences consistent with a housekeeping promoter and is bounded by an Alu repeat sequence. The first two exons of IDUA are separated by an intron of 566 bp, then there is a large intron of approximately 13 kb, and the last 12 exons are clustered within 4.5 kb. No consensus polyadenylation signal was found in the 3′ untranslated region, although two variant polyadenylation signals are proposed.  相似文献   

19.
20.
Malin is a software package for the analysis of eukaryotic gene structure evolution. It provides a graphical user interface for various tasks commonly used to infer the evolution of exon-intron structure in protein-coding orthologs. Implemented tasks include the identification of conserved homologous intron sites in protein alignments, as well as the estimation of ancestral intron content, lineage-specific intron losses and gains. Estimates are computed either with parsimony, or with a probabilistic model that incorporates rate variation across lineages and intron sites. Availability: Malin is available as a stand-alone Java application, as well as an application bundle for MacOS X, at the website http://www.iro.umontreal.ca/~csuros/introns/malin/. The software is distributed under a BSD-style license.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号