首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two techniques have been evaluated for their use in routinely isolating inner cell masses from mouse blastocysts by destroying the trophectoderm. The most efficient method of immunosurgery was a 15-min incubation in a 1:50 dilution of rabbit anti-mouse spleen antiserum followed by a 30--60-min incubation in guinea pig complement (1:10). Alternatively, inner cell masses were isolated by incubating blastocysts in 10(-5) M calcium ionophore A23187 in medium devoid of calcium and magnesium ions. Inner cell masses re-exposed to immunosurgery or the ionophore were less susceptible to lysis than the trophectoderm had been. The presence of the zona pellucida reduced trophectoderm lysis by immunosurgery in antiserum dilutions greater than 1:100, but had no effect when in the presence of ionophore. Inner cell masses were consistently isolated from expanded blastocysts which had been collected 78 h after ovulation and cultured in vitro for 24 h before exposure to ionophore or immunosurgery, whereas blastocysts which had developed for the full 102 h in vivo were frequently unaffected.  相似文献   

2.
Changes in the morphology and cell number of the inner cell mass (ICM) of porcine blastocysts at the expanded and hatched stages during freezing (-6.8 degrees C, -35 degrees C and -196 degrees C) were studied by differential fluorochrome staining. The shape of each ICM cell from fresh blastocysts at the expanded and hatched stages was sharply delineated but that of ICM cells from frozen blastocysts was partially distorted. The cell-to-cell contact of the ICM from fresh blastocysts was tight, while that from frozen blastocysts was loose or scattered. The percentages (18 to 38%) of expanded and hatched blastocysts with tight-contact ICM cells from frozen groups at each step were significantly lower (P<0.05) than that (100%) from fresh blastocysts. The number of live ICM cells and their proportion from frozen expanded blastocysts (10.9, 12,4% at -36 degrees C) were significantly lower (P<0.05) than those from fresh embryos (18.4, 19.1%) and at -196 degrees C (20.6, 18.4%). At the hatched stage, the number of live ICM cells and their proportion were not significantly different between each freezing step. These results show that the ICM of porcine embryos at both the expanded- and hatched-blastocysts stages survived even after freezing at -196 degrees C and that the degree of ICM damage was lower at the hatched stage than at the expanded stage.  相似文献   

3.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

4.
Two experiments were conducted to compare the utility of in vitro- and in vivo-derived bovine blastocysts for the isolation of pluripotent epiblasts. In experiment 1, the inner cell masses (ICMs) of in vivo-collected blastocysts yielded a higher proportion of epiblasts after culture on STO feeder cells than ICMs from in vitro-produced blastocysts (P = .0157). In experiment 2, ICMs of in vivo-collected blastocysts that hatched on day 8 yielded a greater proportion of epiblasts after culture on STO feeder cells than ICMs from in vitro-produced blastocysts that hatched on day 8. The difference was reversed but smaller for blastocysts that hatched on day 9 (Interaction, P = .0125). Epiblasts from blastocysts that hatched on day 8 regardless of their source generated more differentiated cell lines in extended culture than did blastocysts that hatched on day 9. Extended epiblast culture yielded cells identifiable as products of the three embryonic germ layers that included epithelial cells, fibroblasts, neuronal cells, hepatocyte-like cells, and macrophage-like cells. Alkaline phosphatase activity combined with cell morphology identified the bovine epiblast cells and distinguished them from trophectoderm and endoderm that frequently contaminated epiblast cell cultures. In vivo-derived blastocysts, especially from early-hatching blastocysts, were a superior source of pluripotent epiblasts. Epiblast cells in this study all differentiated or senesced indicating that standard conditions for mouse embryonic stem cell culture do not maintain bovine epiblast cells in an undifferentiated state. © 1995 wiley-Liss, Inc.
  • 1 This artilce is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    6.
    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-β), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-β1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-β1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P < 0.05) on Day 8 after in vitro fertilization and similar results to use of SOF + 10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-β1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer.  相似文献   

    7.
    This study examines the effectiveness of the cryotop vitrification method for the cryopreservation of goat blastocysts. To determine the effects of embryo development stage and donor age on in vitro survival rates, good-quality blastocysts from adult and prepubertal goats were sorted into non-expanded, expanded, hatching and completely hatched. In vitro produced (IVP) blastocysts were derived from prepubertal goat oocytes by slicing of ovaries from slaughtered animals while adult goat oocytes were collected by the laparoscopic ovum pick up (LOPU) method. Blastocysts were vitrified/warmed using the cryotop technique. Survival rates were determined in terms of blastocoele re-expansion at 3 and 20 h post-warming. For prepubertal goats, survival rates at 3 h post-warming were significantly higher when expanded blastocysts (78.3%) were vitrified/warmed compared to hatched blastocysts (57.4%), whereas non-expanded (62.5%) or hatching blastocysts (71.4%) showed similar rates. For adult goats, survival rates were significantly higher after warming in expanded (36.4%), hatching (75%) or hatched (50%) blastocysts when compared to non-expanded (0%) blastocysts. When survival rates were assessed at 20 h post-warming, no differences were observed when we compared non-expanded (45.8%), expanded (56.5%), hatching (64.3%) and hatched (50.5%) blastocysts from prepubertal goats; and for blastocysts from adult goats, survival rates were only significantly lower for the non-expanded stage (0%) compared to the other stages. For adult versus prepubertal blastocysts at the same developmental stage, our data indicate significantly higher survival rates at 3 h post-warming for non-expanded and expanded blastocysts from prepubertal goats over their counterparts from adult goats. At 20 h post warming, survival rates were only higher for non-expanded blastocysts from prepubertal goats versus adult goats. Collectively, our data reveal that blastocysts produced in vitro from prepubertal goats return similar survival rates regardless of their development stage, whereas blastocysts derived from adult goats are best for vitrification at the expanded, hatching or hatched stage.  相似文献   

    8.
    9.
    In the present study, the in vitro interaction of embryos with pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV) was investigated by viral antigen detection and by evaluating the expression of virus receptors, namely, poliovirus receptor-related 1 (PVRL1; formerly known as nectin 1) for PRV and sialoadhesin for PRRSV. Embryonic cells of zona pellucida intact embryos incubated with PRV remained negative for viral antigens. Also, no antigen-positive cells could be detected after PRV incubation of protease-treated embryos, since the protease disrupted the expression of PRVL1. However, starting from the five-cell-stage onwards, viral antigen-positive cells were detected after subzonal microinjection of PRV. At this stage, the first foci of PVRL1, also a known cell adhesion molecule, were expressed. At the expanded blastocyst stage, a lining pattern of PVRL1 in the apicolateral border of trophectoderm cells was present, whereas the expression in the inner cell mass was low. Furthermore, PVRL1-specific monoclonal antibody CK41 significantly blocked PRV infection of trophectoderm cells of hatched blastocysts, while the infection of the inner cell mass was only partly inhibited. Viral antigen-positive cells were never detected after PRRSV exposure of preimplantation embryos up to the hatched blastocyst stage. Also, expression of sialoadhesin in these embryonic stages was not detected. We conclude that the use of protease to investigate the virus embryo interaction can lead to misinterpretation of results. Results also show that blastomeres of five-cell embryos up to the hatched blastocysts can become infected with PRV, but there is no risk of a PRRSV infection.  相似文献   

    10.
    This study was designed to evaluate the effect of in vitro culture system on bovine blastocyst yield and quality after vitrification. In Experiment 1, IVM/IVF zygotes were allocated to three culture conditions: (I) Oviductal cells-SOF (OCM-SOF); (II) Oviductal cells-TCM (OCM-TCM); and (III) SOF for 8 days. There was no significant difference between blastocyst rates among groups.In Experiment 2, the IVP-blastocysts in three above culture conditions were vitrified within groups segregated according to age (Day 7 and 8) and blastocoelic cavity size (early and expanded blastocysts). A trend of higher survival rate was obtained in vitrified/warmed early blastocysts compared with expanded ones, so that the difference in OCM-TCM group was significant (P < 0.001). Higher survival and hatching rates (P < 0.001) were obtained in OCM-SOF and OCM-TCM groups (co-culture) compared with SOF group and the age of blastocyst had no effect on post-thaw survival and hatching rates. In Experiment 3, after staining of blastocysts, in fresh blastocysts the highest number of trophectoderm cells was observed in OCM-TCM group and the number of inner cell mass (ICM) was higher in co-culture groups than SOF group (P < 0.001). In vitrified/warmed blastocysts the number of ICM and trophectoderm cells in co-culture groups was higher than SOF group (P < 0.001) except for the ICM of expanded blastocysts. In conclusion, in our culture conditions, the blastocyst yield is not influenced by culture system, while the cryotolerance of IVP-blastocysts is positively influenced by the presence of somatic cells. Moreover, the expanded blastocysts are more susceptible to cryoinjury than early blastocysts.  相似文献   

    11.
    Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12-16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.  相似文献   

    12.
    Blastocyst development, total cell number and allocation to inner cell mass (ICM) and trophectoderm (TE) lineages was compared among day 9 hatched blastocysts from four culture treatments in a two-factor design. Two modified commercial media (KSOM and SOF) were used in atmospheres with two oxygen concentrations (5% and 20% O2). No significant effect of medium on development was found, but 20% O2 increased hatching (p < 0.05). There were more cells in hatched blastocysts cultured in KSOM than in SOF (181 vs 136, respectively; p < 0.0001); however, ICM/total cell ratio was not affected by medium. There was a trend suggesting that the proportion of cells allocated to ICM was lower in hatched blastocysts cultured under 5% O2 compared with 20% O2 (0.323 vs 0.380, respectively; p < 0.1). No significant interactions between medium type and oxygen concentration were found. These results indicate that culture components used in this study may affect cell proliferation without altering cell allocation, and that oxygen concentration may play a role in allocation of cells to ICM and TE lineages.  相似文献   

    13.
    Increased risk of monozygotic twinning (MZT) has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM) splitting in human ‘8’-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i) in vivo developed blastocysts and (ii–iii) in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that ‘8’-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P < 0.01). Moreover, Oct4 immunofluorescence staining was performed to identify the ICM in the hatching and hatched blastocysts. Scattered and split distribution of ICM cells was observed around the small zona opening of ‘8’-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in ‘8’-shaped hatching and hatched blastocysts than in ‘U’-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P < 0.01). Therefore, our results demonstrate that extended in vitro culture can cause high frequencies of ‘8’-shaped hatching, and ‘8’-shaped hatching that may disturb ICM herniation leading to increased risk of ICM splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer.  相似文献   

    14.
    《The Journal of cell biology》1990,111(6):2713-2723
    The distribution of the extracellular matrix protein thrombospondin (TSP) in cleavage to egg cylinder staged mouse embryos and its role in trophoblast outgrowth from cultured blastocysts were examined. TSP was present within the cytoplasm of unfertilized eggs; in fertilized one- to four-cell embryos; by the eight-cell stage, TSP was also densely deposited at cell-cell borders. In the blastocyst, although TSP was present in all three cell types; trophectoderm, endoderm, and inner cell mass (ICM), it was enriched in the ICM and at the surface of trophectoderm cells. Hatched blastocysts grown on matrix-coated coverslips formed extensive trophoblast outgrowths on TSP, grew slightly less avidly on laminin, or on a 140-kD fragment of TSP containing its COOH terminus and putative cell binding domains. There was little outgrowth on the NH2 terminus heparin-binding domain. Addition of anti-TSP antibodies (but not GRGDS) to blastocysts growing on TSP strikingly inhibited outgrowth. Consistent with its early appearance and presence in trophoblast cells during implantation, TSP may play an important role in the early events involved in mammalian embryogenesis.  相似文献   

    15.
    《Cryobiology》2010,60(3):285-290
    This study was designed to evaluate the effect of in vitro culture system on bovine blastocyst yield and quality after vitrification. In Experiment 1, IVM/IVF zygotes were allocated to three culture conditions: (I) Oviductal cells-SOF (OCM-SOF); (II) Oviductal cells-TCM (OCM-TCM); and (III) SOF for 8 days. There was no significant difference between blastocyst rates among groups.In Experiment 2, the IVP-blastocysts in three above culture conditions were vitrified within groups segregated according to age (Day 7 and 8) and blastocoelic cavity size (early and expanded blastocysts). A trend of higher survival rate was obtained in vitrified/warmed early blastocysts compared with expanded ones, so that the difference in OCM-TCM group was significant (P < 0.001). Higher survival and hatching rates (P < 0.001) were obtained in OCM-SOF and OCM-TCM groups (co-culture) compared with SOF group and the age of blastocyst had no effect on post-thaw survival and hatching rates. In Experiment 3, after staining of blastocysts, in fresh blastocysts the highest number of trophectoderm cells was observed in OCM-TCM group and the number of inner cell mass (ICM) was higher in co-culture groups than SOF group (P < 0.001). In vitrified/warmed blastocysts the number of ICM and trophectoderm cells in co-culture groups was higher than SOF group (P < 0.001) except for the ICM of expanded blastocysts. In conclusion, in our culture conditions, the blastocyst yield is not influenced by culture system, while the cryotolerance of IVP-blastocysts is positively influenced by the presence of somatic cells. Moreover, the expanded blastocysts are more susceptible to cryoinjury than early blastocysts.  相似文献   

    16.
    Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.  相似文献   

    17.
    To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos.  相似文献   

    18.
    The objective of this study was to examine the effect of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Synchronised B6CBF1 female mice were mated either to a control male mouse or to one that had been exposed at 7, 21 or 35 days previously, for 24 h to an ambient temperature of 36+/-0.3 degrees C and 66+/-5.6% relative humidity. Embryos were collected from the oviducts of mice at 14-16 h, 34-39 h or 61-65 h after mating or from the uterus at 85-90 h after mating and their developmental status was evaluated morphologically. The number of cells within blastocysts was also determined using bisbenzimide-propidium iodide staining. Paternal heat stress 7 days before mating reduced the proportion of embryos developing from 4-cell (4-C) to morulae (M), hatched blastocysts, total blastocysts and the number of inner cell mass (ICM) and trophectoderm (TE) cells in the blastocyst. Paternal heat stress 21 days prior to mating reduced the proportion of 2-C and 4-C to M embryos with no embryos developing to blastocysts. There were also increases in the number of 1-C and abnormal embryos recorded at this time. Paternal heat stress 35 days before mating decreased the proportion of 2-C embryos, expanded blastocysts and ICM and TE cells in the blastocyst. These results support previous work demonstrating that both the sperm in the epididymis and germ cells in the testis are susceptible to damage by environmental heat stress, with spermatocytes being the most vulnerable. This study also demonstrates that subtle effects on the male such as a short exposure to elevated environmental temperatures can translate to quite profound paternal impacts on early embryo development.  相似文献   

    19.
    The objective of this study was to analyze the validity of the stereomicroscopic evaluation of vitrified-warmed (V-W) porcine blastocysts. Unhatched blastocysts were obtained from Large-white gilts (n=10). Blastocysts (n=156) were vitrified using the Open Pulled Straw technology. After warming, V-W blastocysts were cultured for 24h (V24). Then, their developmental progression was morphologically assessed by stereomicroscopy and classified as: V24 viable re-expanded blastocysts; V24 viable hatched blastocysts or V24 degenerated. Blastocysts which re-expanded or hatched after warming were considered viable. Some fresh blastocysts were not vitrified and were evaluated after 24h in culture (F24). By stereomicroscopic analysis all the fresh blastocysts were considered viable. Some F24, V24 re-expanded viable, V24 hatched viable and V24 degenerated blastocysts were processed for transmission electron microscopy (n=13, 19, 9 and 9, respectively) or assessed by TUNEL for cell-death evaluation (n=16, 21, 11 and 21, respectively). All V24 hatched blastocysts showed similar ultrastructure to fresh blastocysts. However, some V24 re-expanded blastocysts considered viable (6/19) revealed ultrastructural alterations. Degenerated V24 blastocysts showed ultrastructural disintegration. Hatched V24 blastocysts did not differ (p>0.05) from F24 hatched blastocysts with regard to the ratio of dead cells (2.8+/-0.5% versus 1.9+/-0.3%, respectively). However, V24 expanded blastocysts had higher (p<0.01) cell death levels (4.3+/-3.4%) than those observed in the F24 expanded blastocysts (1.1+/-0.3%). The degenerated blastocysts showed the highest cell-death index (19.4+/-6.3%). In summary, V-W blastocyst hatching during in vitro culture appears to coincide with good ultrastructure and low cell-death index, suggesting that the hatching rate assessed by stereomicroscopy is more appropriate than embryo re-expansion for an evaluation of V-W blastocyst quality.  相似文献   

    20.
    Coenzyme Q(10) (CoQ(10)) is an essential component of the plasma membrane ion transporter (PMIT) system and of the electron transport chain in the inner mitochondrial membrane. Because of its intrinsic functions in cell growth and energy metabolism (ATP synthesis), and its protective effects against oxidative stress, CoQ(10) is a good candidate for supporting growth of cells in culture. However, because of its quinone structure, CoQ(10) is extremely lipophilic and practically insoluble in water. We used a specific technology to prepare a submicron-sized dispersion of CoQ(10), inhibiting re-crystallization by a stabilizer. This dispersion, which exhibits a very large specific surface area for drug dissolution, was tested as a supplement for the in vitro culture of bovine embryos in a chemically defined system. The rate of early cleavage of embryos (5- to 8-cell stages) was evaluated 66 h postinsemination (hpi) and was highest in medium supplemented with 30 or 100 microM CoQ(10) (66.5 +/- 0.8% and 68.7 +/- 1.1%, respectively) and lowest in 10 microM CoQ(10) (55.3 +/- 0.8%). The proportions of oocytes developing to blastocysts by 186 hpi were 19.0 +/- 0.6% and 25.2 +/- 0.3% in medium supplemented with 10 microM and 30 microM CoQ(10), respectively, and were significantly (p < 0.001) higher than those obtained with the equivalent amounts of stabilizer (9.9 +/- 0.4% and 11.3 +/- 0.4%). In the presence of 30 microM CoQ(10), significantly (p < 0.001) more blastocysts hatched by 210 hpi than in the equivalent amount of stabilizer (31.8 +/- 1.3 vs. 8.4 +/- 2.2). Expanded blastocysts produced in the presence of 30 microM CoQ(10) had significantly (p < 0.01) more inner cell mass cells and trophectoderm cells, and a significantly (p < 0.001) increased ATP content as compared to expanded blastocysts produced in the presence of the corresponding amount of stabilizer. Our results show that noncrystalline CoQ(10) in submicron-sized dispersion supports the development and viability of bovine embryos produced in a chemically defined culture system.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号