首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relation between red cell anion exchange and urea transport   总被引:1,自引:0,他引:1  
The new distilbene compound, DCMBT (4,4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid) synthesized by Yoon et al. (Biochim. Biophys. Acta 778 (1984) 385-389) was used to study the relation between urea transport and anion exchange in human red cells. DCMBT, which combines properties of both the specific stilbene anion exchange inhibitor, DIDS, and the water and urea transport inhibitor, pCMBS, had previously been shown to inhibit anion transport almost completely and water transport partially. We now report that DCMBT also inhibits urea transport almost completely and that covalent DIDS treatment reverses the inhibition. These observations provide support for the view that a single protein or protein complex modulates the transport of water and urea and the exchange of anions through a common channel.  相似文献   

2.
Relation between red cell anion exchange and water transport   总被引:1,自引:0,他引:1  
A new distilbene compound, 4',4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid (DCMBT), has been synthesized for use in studies of anion and water transport in the human red cell. DCMBT combines features of both the specific stilbene anion transport inhibitor, DIDS, and the mercurial water transport inhibitor, pCMBS. This new compound inhibits anion transport almost completely with a Ki of 15 microM. DCMBT also inhibits water transport by about 15-20% with a Ki of about 8 microM. Treatment of red cells with DIDS inhibits the effect of DCMBT on water transport, suggesting that anion transport and water transport are mediated by the same protein.  相似文献   

3.
Summary It has previously been shown by Macey and Farmer (Biochim. Biophys. Acta 211:104–106, 1970) that phloretin inhibits urea transport across the human red cell membrane yet has no effect on water transport. Jennings and Solomon (J. Gen. Physiol. 67:381–397, 1976) have shown that there are separate lipid and protein binding sites for phloretin on the red cell membrane. We have now found that urea transport is inhibited by phloretin binding to the lipids with aK 1 of 25±8 m in reason-able agreement with theK D of 54±5 m for lipid binding. These experiments show that lipid/protein interactions can alter the conformational state of the urea transport protein. Phloretin binding to the protein site also modulates red cell urea transport, but the modulation is opposed by the specific stilbene anion transport inhibitor, DIDS (4,4-diisothiocyano-2,2-stilbene disulfonate), suggesting a linkage between the urea transport protein and band 3. Neither the lipid nor the protein phloretin binding site has any significant effect on water transport. Water transport is, however, inhibited by up to 30% in a pH-dependent manner by DIDS binding, which suggests that the DIDS/band 3 complex can modulate water transport.  相似文献   

4.
We have previously proposed that a membrane transport complex, centered on the human red cell anion transport protein, band 3, links the transport of anions, cations and glucose. Since band 3 is specialized for HCO 3 /Cl exchange, we thought there might also be a linkage with carbonic anhydrase (CA) which hydrates CO2 to HCO 3 . CA is a cytosolic enzyme which is not present in the red cell membrane. The rate of reaction of CA with the fluorescent inhibitor, dansylsulfonamide (DNSA) can be measured by stopped-flow spectrofluorimetry and used to characterize the normal CA configuration. If a perturbation applied to a membrane protein alters DNSA/CA binding kinetics, we conclude that the perturbation has changed the CA configuration by either direct or allosteric means. Our experiments show that covalent reaction of the specific stilbene anion exchange inhibitor, DIDS, with the red cell membrane, significantly alters DNSA/CA binding kinetics. Another specific anion exchange inhibitor, benzene sulfonate (BSate), which has been shown to bind to the DIDS site causes a larger change in DNSA/CA binding kinetics; DIDS reverses the BSate effect. These experiments show that there is a linkage between band 3 and CA, consistent with CA interaction with the cytosolic pole of band 3.This work was supported in part by a grant-in-aid from the American Heart Association, by the Squibb Institute for Medical Research and by The Council for Tobacco Research.We should like to express our thanks to Dr. I.M. Wiener for kindly supplying us with the impermeable sulfonamide, ZBI, which we used in preliminary experiments and to Dr. T.H. Maren for analysis of a sample of BCA II.  相似文献   

5.
The conductive (net) anion permeability of human red blood cells was determined from net KCl or K2SO4 effluxes into low K+ media at high valinomycin concentrations, conditions under which the salt efflux is limited primarily by the net anion permeability. Disulfonic stilbenes, inhibitors of anion exchange, also inhibited KCl or K2SO4 efflux under these conditions, but were less effective at lower valinomycin concentrations where K+ permeability is the primary limiting factor. Various concentrations of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) had similar inhibitory effects on net and exchange sulfate fluxes, both of which were almost completely DIDS sensitive. In the case of Cl-, a high correlation was also found between inhibition of net and exchange fluxes, but in this case about 35% of the net flux was insensitive to DIDS. The net and exchange transport processes differed strikingly in their anion selectivity. Net chloride permeability was only four times as high as net sulfate permeability, whereas chloride exchange is over 10,000 times faster than sulfate exchange. Net OH-permeability, determined by an analogous method, was over four orders of magnitude larger than that of Cl-, but was also sensitive to DIDS. These data and others are discussed in terms of the possibility that a common element may be involved in both net and exchange anion transport.  相似文献   

6.
H2DIDS, the dihydro analog of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) can interact covalently with membrane sites, resulting in an irreversible inhibition of anion exchange. At low temperatures (0°C) and for relatively short times, however, its interaction is largely reversible, so that a kinetic analysis of the nature of its inhibitory effect on Cl? self exchange can be performed. The effects of variations in the chloride concentration on the inhibitory potency of H2DIDS are consistent with the concept that Cl? and H2DIDS compete for the transport site of the anion exchange system. The value of Ki for H2DIDS is 0.046 μM, indicating that H2DIDS has a higher affinity for the transport system than any other inhibitor so far examined. If, as seems probable, the covalent labelling of H2DIDS occurs at the same site as the reversible binding, H2DIDS can be used as a covalent label for the transport site. The specific localization of H2DIDS in the band-3 protein thus indicates that this protein participates directly in anion exchange.  相似文献   

7.
Triton X-100 extracts of membrane proteins from ghosts of normal and pronase treated cells enhance the anion permeability of lecithin vesicles. With proteins from cells pretreated with DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonate), a specific inhibitor of anion transport, the anion permeability is not enhanced. On the basis that the Triton X-100 extracts are considerably enriched in a protein component of 95,000 molecular weight (or a 65,000 molecular weight segment in the case of pronase treated cells), and that DIDS is bound almost exclusively to the same proteins, it is suggested that the pronase resistant, 65,000 molecular weight segment of the 95,000 molecular weight protein is directly involved in anion transport.  相似文献   

8.
Inhibition of red cell water transport by the sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) has been reported by Naccache and Sha'afi ((1974) J. Cell Physiol. 84, 449-456) but other investigators have not been able to confirm this observation. Brown et al. ((1975) Nature 254, 523-525) have shown that, under appropriate conditions, DTNB binds only to band 3 in the red cell membrane. We have made a detailed investigation of DTNB binding to red cell membranes that had been treated with the sulfhydryl reagent N-ethylmaleimide (NEM), and our results confirm the observation of Brown et al. Since this covalent binding site does not react with either N-ethylmaleimide or the sulfhydryl reagent pCMBS (p-chloromercuribenzenesulfonate), its presence has not previously been reported. This covalent site does not inhibit water transport nor does it affect any transport process we have studied. There is an additional low-affinity (non-covalent) DTNB site that Reithmeier ((1983) Biochim. Biophys. Acta 732, 122-125) has shown to inhibit anion transport. In N-ethylmaleimide-treated red cells, we have found that this binding site inhibits water transport and that the inhibition can be partially reversed by the specific stilbene anion exchange transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), thus linking water transport to anion exchange. DTNB binding to this low-affinity site also inhibits ethylene glycol and methyl urea transport with the same KI as that for water inhibition, thus linking these transport systems to that for water and anions. These results support the view that band 3 is a principal constituent of the red cell aqueous channel, through which urea and ethylene glycol also enter the cell.  相似文献   

9.
This study is designed to examine the participation of the major red cell membrane protein, band 3 protein, in the chain which transmits information from the cardiac glycoside site on the external face of the cell (Na+ + K+)-ATPase to the megadalton glycolytic enzyme complex within the cell. The experiments show that the anion transport inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid, affects the resonance of 2,3-diphosphoglycerate, as does the cardiac glycoside cation transport inhibitor, ouabain. Resonance shifts induced by the cardiac glycoside alone are modulated by addition of the anion transport inhibitor which indicates that there is coupling in the red cell between the (Na+ + K+)-ATPase and band 3 protein. Band 3 protein was separated from the membrane and partially purified following the technique of Yu and Steck ((1975) J. Biol. Chem. 250, 9170–9175). When glyceraldehyde-3-phosphate dehydrogenase was added to the separated band 3 protein preparation, addition of cardiac glycosides caused shifts in the 31P resonance of glyceraldehyde 3-phosphate. These experiments indicate that there is coupling between the (Na+ + K+)-ATPase and band 3 protein in the separated preparation and suggest that the anion and cation transport systems may be closely related spatially and functionally in the intact red cell.  相似文献   

10.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

11.
Control of red cell urea and water permeability by sulfhydryl reagents   总被引:1,自引:0,他引:1  
The binding constant for pCMBS (p-chloromercuribenzenesulfonate) inhibition of human red cell water transport has been determined to be 160 +/- 30 microM and that for urea transport inhibition to be 0.09 +/- 0.06 microM, indicating that there are separate sites for the two inhibition processes. The reaction kinetics show that both processes consist of a bimolecular association between pCMBS and the membrane site followed by a conformational change. Both processes are very slow and the on rate constant for the water inhibition process is about 10(5) times slower than usual for inhibitor binding to membrane transport proteins. pCMBS binding to the water transport inhibition site can be reversed by cysteine while that to the urea transport inhibition site can not be reversed. The specific stilbene anion exchange inhibitor, DBDS (4,4'-dibenzamidostilbene-2,2'-disulfonate) causes a significant change in the time-course of pCMBS inhibition of water transport, consistent with a linkage between anion exchange and water transport. Consideration of available sulfhydryl groups on band 3 suggests that the urea transport inhibition site is on band 3, but is not a sulfhydryl group, and that, if the water transport inhibition site is a sulfhydryl group, it is located on another protein complexed to band 3, possibly band 4.5.  相似文献   

12.
Effects of bicarbonate on lithium transport in human red cells   总被引:12,自引:9,他引:3       下载免费PDF全文
Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis.  相似文献   

13.
The parallel effects of the anion transport inhibitor DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The "slippage" model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS- sensitive component tends to saturate suggest a model in which net anion flow involves "transit" of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.  相似文献   

14.
The ping-pong model for the red cell anion exchange system postulates that the transport protein band 3 can exist in two different conformations, one in which the transport site faces the cytoplasm (Ei) and another in which it faces the outside medium (Eo). This model predicts that an increase in intracellular chloride should increase the fraction of sites in the outward-facing, unloaded form (Eo). Since external H2DIDS is a competitive inhibitor of chloride exchange that does not cross the membrane, it must bind only to the Eo form. Thus, an increase in Eo should cause an increase in H2DIDS inhibition. When intracellular chloride was increased at constant extracellular chloride, the inhibitory potency of H2DIDS rose, as predicted by the ping-pong model. This increase was not due to the concomitant changes in intracellular pH or membrane potential. When the chloride gradient was reversed, the inhibitory potency of H2DIDS decreased, again in qualitative agreement with the ping-pong model. These data provide support for the ping-pong model and also demonstrate that chloride gradients can be used to change the orientation of the transport protein.  相似文献   

15.
Summary A chromophoric derivative of phenylglyoxal, 4-hydroxy-3-nitrophenylglyoxal (HNPG), known to be highly selective for modification of arginine residues in aqueous solution is found to be a potent inhibitor of anion transport across the red cell membrane. In contrast to the action of all other arginine-specific reagents used under the experimental conditions in this laboratory, the action of HNPG on sulfate transport is completely reversible. Hence, a kinetic analysis of its inhibitory effect on SO 4 2– self-exchange could be performed. The effect of increasing chloride concentration on the inhibitory potency of HNPG is consistent with the concept that Cl and HNPG compete for the same site on the anion transporter. The IC50 value for the inhibition of SO 4 2– exchange with HNPG is about 0.13mm at pH 8.0 and 0.36mm at pH 7.4, and the Hill coefficient for the interaction between the transporter and the inhibitor is near one at both pH's. HNPG is able to protect the transport system against inhibition with the (under our experimental conditions) irreversibly acting arginine specific reagent, phenylglyoxal. Partial inactivation of the transport system with phenylglyoxal lowers the maximal rates of SO 4 2– and chloride exchange but does not modify the apparentK s for the substrate anions. Reversibly acting anion transport inhibitors known to interact with the DIDS binding site like salicylate, tetrathionate, APMB, DNDS, and flufenamate are able to protect the transport system against phenylglyoxalation. Other inhibitors like phloretin and phlorizin have no effect.  相似文献   

16.
The disulfonic stilbene (4-acetamido-4′-isothiocyano-2,2′-disulfonic stilbene) is found to be more potent than acetazolamide as an anion transport inhibitor in the turtle bladder, but less potent than acetazolamide as a carbonic anhydrase inhibitor. The anion-dependent (HCO3-−, Cl) moeity of the short-circuiting current is eliminated by 4-acetamido-4′-isothiocyano-2,2′-disulfonic stibene, but only after its addition to the serosal bathing fluid. Whereas 4-acetmido-4′-isothiocyano-2,2′-disulfonic stilbene has no effect om Na+transport across the bladder, it is more potent than ouabain as an inhibitor of microsomal (Na++K+)-ATPase of both turtle bladder and eel electric organ.  相似文献   

17.
Pesci P 《Plant physiology》1988,86(3):927-930
The increase in proline induced by ABA, a process stimulated by NaCl or KCl in barley leaves, did not occur when Na+ (or K+) was present in the external medium as the gluconate salt, namely with an anion unable to permeate the plasma membrane. However, proline increase was restored, to different extents, by the addition of various chloride salts but not by ammonium chloride. Moreover, it was shown that the stimulation of the process by NaCl (or KCl) was variously affected by the presence of different salts; all the ammonium salts (10 millimolar NH4+ concentration) inhibited this stimulation almost completely. Inhibition by NH4+ was accompanied by a decreased Na+ influx (−40%). Also, in the case of Na-gluconate, Na+ uptake was reduced and the addition of Cl as the calcium or magnesium salt (but not as ammonium salt) restored both the ion influxes and the increase in proline typical of NaCl treatments. Both 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS), an anion transport inhibitor, and tetraethylammonium chloride (TEA), a K+ channels-blocking agent, caused, as well as with a reduction of ion influxes, an inhibition of the proline accumulation. The inhibition was practically total with 1 millimolar DIDS and about 80% with 20 millimolar TEA. A possible role of ion influxes in the process leading to the increase in proline induced by ABA is proposed.  相似文献   

18.
Pre-steady state Cl- efflux experiments have been performed to test directly the idea that the transport inhibitor H2DIDS (4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate) binds preferentially to the outward-facing state of the transporter. Cells were equilibrated with a medium consisting of 150 mM sodium phosphate, pH 6.2, N2 atmosphere, and 80-250 microM 36Cl-. Addition of H2DIDS (10-fold molar excess compared with band 3) induces a transient efflux of Cl-, as expected if H2DIDS binds more tightly to outward-facing than to inward-facing states. The size of the H2DIDS-induced efflux depends on the Cl- concentration and is about 700,000 ions per cell at the highest concentrations tested. The size of the transient efflux is larger than would be expected if the catalytic cycle for anion exchange involved one pair of exchanging anions per band 3 dimer. These results are completely consistent with a ping-pong mechanism of anion exchange in which the catalytic cycle consists of one pair of exchanging anions per subunit of the band 3 dimer.  相似文献   

19.
When human erythrocytes are suspended in low-Cl- media (with sucrose replacing Cl-), there is a large increase in both the net efflux and permeability of K+. A substantial portion (greater than 70% with Cl- less than 12.5 mM) of this K+ efflux is inhibited by the anion exchange inhibitor DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). This inhibition cannot be explained as an effect of DIDS on net Cl- permeability (Pcl) and membrane potential, but rather represents a direct effect on the K+ permeability. When cells are reacted with DIDS for different times, the inhibition of K+ efflux parallels that of Cl- exchange, which strongly indicates that the band 3 anion exchange protein (capnophorin) mediates the net K+ flux. Since a noncompetitive inhibitor of anion exchange, niflumic acid, has no effect on net K+ efflux, the net K+ flow does not seem to involve the band 3 conformational change that mediates anion exchange. The data suggest that in low-Cl- media, the anion selectivity of capnophorin decreases so that it can act as a very low-conductivity channel for cations. Na+ and Rb+, as well as K+, can utilize this pathway.  相似文献   

20.
Human erythrocytes (RBC) were shown to exchange Cl by an exceptionally fast mechanism ( of 36Cl equilibration at 1 °C is approx. 20 sec) which is demonstrably susceptible to specific inhibitors of anion exchange such as 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS) and 4,4′-diisothyocyano-2,2′stilbene disulfonic acid (DIDS). Friend erythroleukemic cells (FELC) on the other hand, display both markedly slower Cl exchange rates ( of 36Cl equilibration at 1 °C is approx. 60 min) and substantially lower susceptibilities to either DNDS or DIDS than RBC. After fusion between RBC and FELC, Cl exchange across FELC-RBC plasma membranes was noticeably enhanced compared with FELC. This enhancement was specificially abolished either by the addition of DNDS or by fusing FELC with DIDS-treated RBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号