首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abilities of lymphokines and heat-killed bacteria to induce and to maintain tumoricidal activity and/or the secretion of reactive nitrogen intermediates (RNI) were comparatively assessed in bone marrow-derived mononuclear phagocytes (BMM phi) in vitro and in adherent peritoneal cells (APC) ex vivo. In showing that the kinetics of tumoricidal activity and of secretion of RNI induced by macrophage-activating agents in BMM phi and/or in peritoneal cells do largely parallel each other, the present findings provide evidence for a role of RNI in tumor cell killing by activated macrophages both in vitro and in vivo.  相似文献   

2.
The abilities of various bacteria to induce in a pure population of bone marrow-derived mononuclear phagocytes (BMM phi) tumoricidal activity and/or the generation of reactive nitrogen intermediates (RNI) were comparatively assessed. Interaction of BMM phi with bacteria led to expression of these functional activities, indicating that the organisms were recognized as foreign. As the majority of bacteria elicited in BMM phi either tumoricidal activity (that is maintained for days) or the production of RNI, measured by the release of nitrite (that is short-lived), it appears that the two functions are under separate control. However, both functions are inhibited or even abrogated by arginase or the L-arginine analogue, NG-monomethyl-L-arginine, suggesting that their expression is dependent on L-arginine.  相似文献   

3.
Concentrations of bacterial lipopolysaccharide (LPS) as low as 1 ng/ml suppressed the activity of the scavenger receptor on cultured human monocyte-macrophages. In contrast, concentrations of LPS as high as 100 ng/ml had no effect on the activity of the low density lipoprotein (LDL) receptor. LPS and purified forms of the lipid A moiety of LPS were effective in suppressing scavenger receptor activity. However, acid hydrolysis of the labile phosphate group of the native diphosphorylated lipid A to form monophosphoryl lipid A rendered the molecule ineffective in suppressing scavenger receptor activity. LPS at a concentration of 100 ng/ml had no effect on the secretion of apolipoprotein E, phagocytic activity, tumoricidal activity, or the protein content of monocyte-macrophages. We conclude that the active component of LPS that mediates suppression of scavenger receptor activity is diphosphoryl lipid A.  相似文献   

4.
Listeria monocytogenes (Lm) evades being killed after phagocytosis by macrophages by escaping from vacuoles into cytoplasm. Activated macrophages are listericidal, in part because they can retain Lm in vacuoles. This study examined the contribution of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) to the inhibition of Lm escape from vacuoles. Lm escaped from vacuoles of nonactivated macrophages within 30 min of infection. Macrophages activated with IFN-gamma, LPS, IL-6, and a neutralizing Ab against IL-10 retained Lm within the vacuoles, and inhibitors of ROI and RNI blocked inhibition of vacuolar escape to varying degrees. Measurements of Lm escape in macrophages from gp91(phox-/-) and NO synthase 2(-/-) mice showed that vacuolar retention required ROI and was augmented by RNI. Live cell imaging with the fluorogenic probe dihydro-2',4,5,6,7,7'-hexafluorofluorescein coupled to BSA (DHFF-BSA) indicated that oxidative chemistries were generated rapidly and were localized to Lm vacuoles. Chemistries that oxidized DHFF-BSA were similar to those that retained Lm in phagosomes. Fluorescent conversion of DHFF-BSA occurred more efficiently in smaller vacuoles, indicating that higher concentrations of ROI or RNI were generated in more confining volumes. Thus, activated macrophages retained Lm within phagosomes by the localization of ROI and RNI to vacuoles, and by their combined actions in a small space  相似文献   

5.
Methionine sulphoxide reductases (Msr) reduce methionine sulphoxide to methionine and protect bacteria against reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI). Many organisms express both MsrA, active against methionine-( S )-sulphoxide, and MsrB, active against methionine-( R )-sulphoxide. Mycobacterium tuberculosis (Mtb) expresses MsrA, which protects Δ msrA-Escherichia coli from ROI and RNI. However, the function of MsrA in Mtb has not been defined, and it is unknown whether Mtb expresses MsrB. We identified MsrB as the protein encoded by Rv2674 in Mtb and confirmed the distinct stereospecificities of recombinant Mtb MsrA and MsrB. We generated strains of Mtb deficient in MsrA, MsrB or both and complemented the mutants. Lysates of singly deficient strains displayed half as much Msr activity as wild type against N -acetyl methionine sulphoxide. However, in contrast to other bacteria, single mutants were no more vulnerable than wild type to killing by ROI/RNI. Only Mtb lacking both MsrA and MsrB was more readily killed by nitrite or hypochlorite. Thus, MsrA and MsrB contribute to the enzymatic defences of Mtb against ROI and RNI.  相似文献   

6.
In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E. coli or a mutant strain deficient in htrB, a chimeric LPS with altered lipid A structure was produced. Compared with wild-type E. coli lipid A, the new lipid A species contained a palmitate (C16) in the position normally occupied by laurate (C12) suggesting that the cloned gene performs the same function as E. coli htrB but preferentially transfers the longer-chain palmitic acid that is known to be present in P. gingivalis LPS. LPS was purified from wild-type E. coli, the E. coli htrB mutant strain and the htrB mutant strain expressing the P. gingivalis acyltransferase. LPS from the palmitate bearing chimeric LPS as well as the htrB mutant exhibited a reduced ability to activate human embryonic kidney 293 (HEK293) cells transfected with TLR4/MD2. LPS from the htrB mutant also had a greatly reduced ability to stimulate interleukin-8 (IL-8) secretion in both endothelial cells and monocytes. In contrast, the activity of LPS from the htrB mutant bacteria expressing the P. gingivalis gene displayed wild-type activity to stimulate IL-8 production from endothelial cells but a reduced ability to stimulate IL-8 secretion from monocytes. The intermediate activation observed in monocytes for the chimeric LPS was similar to the pattern seen in HEK293 cells expressing TLR4/MD2 and CD14. Thus, the presence of a longer-chain fatty acid on E. coli lipid A altered the activity of the LPS in monocytes but not endothelial cell assays and the difference in recognition does not appear to be related to differences in Toll-like receptor utilization.  相似文献   

7.
Chemistry, physiology and pathology of free radicals   总被引:8,自引:0,他引:8  
Bergendi L  Benes L  Duracková Z  Ferencik M 《Life sciences》1999,65(18-19):1865-1874
The superoxide anion radical and other reactive oxygen species (ROS) are formed in all aerobic organisms by enzymatic and nonenzymatic reactions. ROS arise in both physiological and pathological processes, but efficient mechanisms have evolved for their detoxification. Similarly, reactive nitrogen intermediates (RNI) have physiological activity, but can also react with different types of molecules, including superoxide, to form toxic products. ROS and RNI participate in the destruction of microorganisms by phagocytes, as in the formation of a myeloperoxidase-hydrogen peroxide-chloride/iodide complex which can destroy many cells, including bacteria. It is known that the cellular production of ROS and RNI is controlled by different mechanisms. These free radicals can react with key cellular structures and molecules, thus altering their biological function. An imbalance between the systems producing and removing ROS and RNI may result in pathological consequences.  相似文献   

8.
Cocaine is a popular drug of abuse and despite impressive advances in the understanding of its physiological, pharmacological, and toxic effects, its mechanism of immunosuppression at the cellular level is not well understood. In this paper we report the role of effector molecules like superoxide and nitric oxide in the antibacterial function of macrophages exposed to acute and chronic doses of cocaine in vivo. Bacterial killing by acute cocaine-exposed macrophages (ACE-Mphis) increased significantly, with a concomitant rise in respiratory burst and generation of superoxide and nitric oxide, compared with control macrophages. In contrast, chronic cocaine-exposed macrophages (CCE-Mphis) exhibited limited antimicrobial activity, which correlated closely with diminished respiratory burst and reduced production of superoxide and nitric oxide. Further, a killing assay was carried out in the presence of N(G)-methyl-L-arginine acetate, an inhibitor of iNOS, to evaluate the role of nitric oxide in the killing process. The results obtained indicate that while about 30% killing of input bacteria by control and ACE-Mphis was attributable to NO-mediated killing, only about 6% killing from NO was found with CCE-Mphis. The findings indicate that acute exposure to cocaine possibly caused upregulation of enzymes responsible for the generation of ROI (reactive oxygen intermediates) and RNI (reactive nitrogen intermediates), leading to enhanced antimicrobial function. On the other hand, chronic exposure to cocaine impaired the oxygen-dependent microbicidal capacity of macrophages, possibly through impaired expression of enzymes responsible for ROI and RNI formation. Proinflammatory cytokines may play a key role in cocaine-mediated immunosuppression, since exposure of macrophages to cocaine impairs the ability of the cells to produce these cytokines.  相似文献   

9.
We have investigated the ability of lipopolysaccharides (LPS) and lipoteichoic acids (LTA) to induce rat peritoneal mast cells to degranulation and histamine release, and to cysteinyl leukotriene (LT) generation. We have stated that LPS Salmonella Enteritidis, LPS Escherichia coli O111:B4 and LPS E. coli O55:B5 did not activate rat mast cells to degranulation and histamine release. However, LPSs induced LT synthesis and secretion; the strongest stimulant to generation of LT was LPS E. coli O55:B5 (concentration of LT in supernatant was 830.5 +/-15.2 pg/ml). We have also observed that LTA Staphylococcus aureus and LTA Bacillus subtilis stimulated rat mast cells to degranulation and histamine secretion, even though the percentage of the releases histamine was relatively low (10.0 +/- 1.4 and 10.4 +/- 5.4 at antigen concentration, respectively). At the same time, LTA of both of the bacterial species strongly activate LT generation by mast cells (concentrations of LT in supernatants were 777.9 +/- 11.2 pg/ml and 734.0 +/- 38.3 pg/ml, respectively, at the antigen concentration 50 ng/ml). Our results have shown that LPS oraz LTA activate rat mast cells to secretion of proinflammatory mediators.  相似文献   

10.
We have previously shown that crude bacterial lipopolysaccharide (LPS) preparations markedly increase cGMP levels in rat fetal liver cells in a time- and dose-dependent manner. To provide evidence that this effect was due to LPS and not an impurity in the preparations, three series of experiments were undertaken. First, LPS was prepared from Escherichia coli 055:B5 cells and its cGMP potency assessed at various stages of purification; second, the cGMP activity of three highly purified LPS preparations of known chemical structure was measured, and third, a well characterized LPS was broken into its lipid A and polysaccharide fractions and the cGMP activity of each fraction determined. The results showed that the cGMP stimulatory activity in E. coli 055:B5 cells co-purified in a parallel fashion with the LPS molecule derived from those cells, that the three chemically defined, highly purified LPS preparations were all very potent stimulators of cGMP levels, and that the ability to increase cGMP levels of lipid A prepared from a highly purified LPS was comparable in potency to the intact LPS, whereas the polysaccharide portion of the molecule was without activity. These findings indicate that the cGMP effect of LPS preparation is due to LPS and not a contaminant and that the activity resides within the lipid A moiety of the molecule.  相似文献   

11.
Divergent response to LPS and bacteria in CD14-deficient murine macrophages   总被引:10,自引:0,他引:10  
Gram-negative bacteria and the LPS constituent of their outer membranes stimulate the release of inflammatory mediators believed to be responsible for the clinical manifestations of septic shock. The GPI-linked membrane protein, CD14, initiates the signaling cascade responsible for the induction of this inflammatory response by LPS. In this paper, we report the generation and characterization of CD14-null mice in which the entire coding region of CD14 was deleted. As expected, LPS failed to elicit TNF-alpha and IL-6 production in macrophages taken from these animals, and this loss in responsiveness is associated with impaired activation of both the NF-kappaB and the c-Jun N-terminal mitogen-activated protein kinase pathways. The binding and uptake of heat-killed Escherichia coli, measured by FACS analysis, did not differ between CD14-null and wild-type macrophages. However, in contrast to the findings with LPS, whole E. coli stimulated similar levels of TNF-alpha release from CD14-null and wild-type macrophages at a dose of 10 bioparticles per cell. This effect was dose dependent, and at lower bacterial concentrations CD14-deficient macrophages produced significantly less TNF-alpha than wild type. Approximately half of this CD14-independent response appeared to be mediated by CD11b/CD18, as demonstrated by receptor blockade using neutrophil inhibitory factor. An inhibitor of phagocytosis, cytochalasin B, abrogated the induction of TNF-alpha in CD14-deficient macrophages by E. coli. These data indicate that CD14 is essential for macrophage responses to free LPS, whereas other receptors, including CD11b/CD18, can compensate for the loss of CD14 in response to whole bacteria.  相似文献   

12.
Increased oxidative stress (OS) in diabetes mellitus is one of the major factors leading to diabetic pathology. However, the mediators and mechanism that provoke OS in diabetes is not fully understood, and it is possible that accumulation of advanced glycation end products (AGEs) formed secondary to hyperglycemic conditions may incite circulating polymorphonuclear neutrophils (PMN) to generate reactive oxygen species (ROS). In this report, we aim to investigate the effect of AGE on reactive oxygen and nitrogen species generation and subsequent OS in PMN. AGE-HSA exert dose- and time-dependent enhancement of ROS and reactive nitrogen intermediates (RNI) generation by PMN. Increased ROS and RNI generation were found to be mediated through the upregulation of NADPH oxidase and inducible nitric oxide synthase (iNOS), respectively, as evident from the fact that AGE-treated neutrophils failed to generate ROS and RNI in presence of diphenyleneiodonium, a flavoprotein inhibitor for both enzymes. Further increased generation of ROS and RNI ceased when the cells were incubated with anti-RAGE antibody suggesting the involvement of AGE-RAGE interaction. Also increased malondialdehyde (MDA) and protein carbonyl formation in AGE-exposed PMN suggest induction of OS by AGE. This study provides evidence that AGEs may play a key role in the induction of oxidative stress through the augmentation of PMN-mediated ROS and RNI generation and this may be in part responsible for development of AGE-induced diabetic pathology.  相似文献   

13.
The ability of lipid A structural variants to elicit unique endothelial cell gene expression was examined by measuring global gene expression profiles in human umbilical cord vein endothelial cells (HUVEC) using Affymetrix full genome chips. Two lipid A structural variants obtained from Porphyromonas gingivalis designated PgLPS(1435/1449) and PgLPS(1690) as well as LPS obtained from Escherichia coli wild type and an E. coli msbB mutant (missing myristic acid in the lipid A) were examined. Each of these lipid A structures has been shown to interact with TLR4; however, PgLPS(1435/1449) and E. coli msbB LPS have been shown to be TLR4 antagonists while PgLPS(1690) and wild-type E. coli LPS are TLR4 agonists. It was found that PgLPS(1435/1449) and PgLPS(1690) as well as E. coli msbB LPS activated a subset of those genes significantly transcribed in response to E. coli wild-type LPS. Furthermore, the subset of genes expressed in response to the different lipid A structural forms were those most significantly activated by wild-type E. coli LPS demonstrating a hierarchy in TLR4-dependent endothelial cell gene activation. A unique gene expression profile for the weak TLR4 agonist PgLPS(1690) was observed and represents a TLR4 hierarchy in endothelial cell gene activation.  相似文献   

14.
The effects of a monosaccharide precursor of Escherichia coli lipid A (lipid X) on murine macrophages were studied. Lipid X is a diacylglucosamine 1-phosphate bearing beta-hydroxymyristoyl groups at positions 2 and 3. Lipid X, as well as lipopolysaccharide and lipid A, enhanced O2- generation in mouse peritoneal macrophages and a macrophage-like cell line, J774.1, and further induced the tumor-cytotoxic activity of peritoneal macrophages. Elimination of a 1-phosphate or 3-O-beta-hydroxymyristoyl groups are essential for the elevated O2- generation and induction of tumoricidal activity due to lipid X.  相似文献   

15.
Abstract Lipopolysaccharide of Helicobacter pylori was tested for its mitogenicity and for its ability to stimulate cytokine release in human peripheral blood mononuclear cells (PBMC) of healthy and H. pylori -infected blood donors. Mitogenicity in PBMC induced by H. pylori LPS was similar to that induced by Campylobacter jejuni lipopolysaccharide, but lower than that induced by Escherichia coli lipopolysaccharide in the H. pylori negative blood donor group. Furthermore, H. pylori LPS was able to induce tumour necrosis factor (TNF) interleukin 1 (IL-1) and interleukin 6 (IL-6) secretion of PBMC. Compared with the ability of C. jejuni and E. coli lipopolysaccharides to stimulate cytokine release, H. pylori lipopolysaccharide induced a significantly lower TNF and IL-1 secretion of PBMC than the other tested bacterial lipopolysaccharides. Similar amounts of IL-6 release were obtained by stimulation of PBMC with H. pylori and C. jejuni lipopolysaccharides, whereas a higher IL-6 release was measured by stimulation with E. coli lipopolysaccharide. The results of this study suggest that H. pylori lipopolysaccharide has a lower immunological activity than lipopolysaccharides of other intestinal bacteria. This is probably due to its unusual acylation and phosphorylation pattern of lipid A.  相似文献   

16.
Macrophages from the lipopolysaccharide (LPS)-responsive C3H/HeN mouse strain and the closely related LPS-nonresponsive C3H/HeJ strain were compared for tumoricidal activation and protein synthetic changes following in vivo and in vitro stimulation, utilizing two-dimensional polyacrylamide gel electrophoresis of [35S]methionine-labeled proteins. Peritoneal macrophages elicited from C3H/HeN mice with heat-killed Propionibacterium acnes exhibited tumoricidal activity in a 16-hr cytolytic assay and expressed cytoplasmic levels of a 23.5-kDa protein during 48 hr of culture. The inability to detect persistent expression of p23.5 in P. acnes-stimulated C3H/HeJ macrophages correlated with the cytolytic impotence of those cells in the 16-hr chromium release assay. C3H/HeN macrophage populations lacking tumoricidal capacity could be rendered lytic, as could P. acnes-elicited C3H/HeJ macrophages, following in vitro stimulation with bacterial lipopolysaccharide. Concomitant with the LPS-induced expression of new functional activity was the appearance of augmented levels of several macrophage-specific proteins, including p23.5. This effect was dependent upon the lipid A moiety of LPS as the effects of LPS could be blocked by inclusion of polymyxin B sulfate in the culture medium. However, neither tumoricidal function nor protein modulation could be readily induced in C3H/HeJ proteose peptone-elicited or resident macrophages. These results identify biochemical responses to stimuli which may be requisite to acquisition or execution of cytolytic activity.  相似文献   

17.
Nitric oxide (NO) and related reactive nitrogen intermediates (RNI) are effective antimycobacterial agents and signal-transducing molecules. The present study uses microarray analysis to examine the effects of RNI on Mycobacterium tuberculosis gene expression. A common set of 53 genes was regulated by two chemically distinct nitric oxide donors. For a subset of the RNI-inducible genes, evidence exists suggesting that they may play a role in promoting survival of the tubercle bacillus in the host. Results obtained from studies based on a murine experimental tuberculosis model involving nos2-deficient mice suggest that RNI could regulate M. tuberculosis gene expression in vivo. Finally, there is a remarkable overlap between the RNI-inducible regulon and that previously reported to be regulated by hypoxia; and both reactive nitrogen species and anaerobicity upregulate the expression of one and the same putative two-component regulatory response system. Together, the results of this study provide evidence suggesting that (i) RNI play a role in regulating M. tuberculosis gene expression in vivo; (ii) the reactive nitrogen species upregulate genes that may be conducive to the survival of the tubercle bacillus in the infected host; and (iii) RNI and hypoxia may regulate mycobacterial gene expression via overlapping signal transduction pathways.  相似文献   

18.
In contrast to cholera toxin (CT), which is secreted solubly by Vibrio cholerae across the outer membrane, heat-labile enterotoxin (LT) is retained on the surface of enterotoxigenic Escherichia coli (ETEC) via an interaction with lipopolysaccharide (LPS). We examined the nature of the association between LT and LPS. Soluble LT binds to the surface of LPS deep-rough biosynthesis mutants but not to lipid A, indicating that only the Kdo (3-deoxy-d-manno-octulosonic acid) core is required for binding. Although capable of binding truncated LPS and Kdo, LT has a higher affinity for longer, more complete LPS species. A putative LPS binding pocket is proposed based on the crystal structure of the toxin. The ability to bind LPS and remain associated with the bacterial surface is not unique to LT, as CT also binds to E. coli LPS. However, neither LT nor CT is capable of binding to the surface of Vibrio. The core structures of Vibrio and E. coli LPS differ in that Vibrio contains a phosphorylated single Kdo-lipid A, and E. coli LPS contains unphosphorylated Kdo2-lipid A. We determined that the phosphate group on the Kdo core of Vibrio LPS prevents CT from binding, resulting in the secretion of soluble toxin. Because LT binds E. coli LPS, it remains associated with the extracellular bacterial surface and is released in association with outer membrane vesicles. We propose that difference in the extracellular fates of LT and CT contribute to the differences in disease caused by ETEC and Vibrio cholerae.  相似文献   

19.
Effect of L-arginine on the retention of macrophage tumoricidal activity   总被引:8,自引:0,他引:8  
It has been reported that the tumoricidal activity of macrophages (M phi) depends on L-arginine and that L-arginine metabolites such as reactive nitrogen intermediates alter M phi physical capacities. The aim of this report is to investigate the dose-related effect of L-arginine on the expression and retention of M phi tumoricidal activity. Cytotoxicity of M phi activated by IFN-gamma plus LPS was detected in the presence of about 0.1 mM or more of L-arginine. This paralleled the NO2- production in the presence, but not in the absence, of L-arginine. On the other hand, activated M phi were destined to die and lost their tumoricidal activity with time in the presence of 0.3 mM or more L-arginine. They retained, however, considerable activity in the absence or presence of 0.15 mM L-arginine. This retention of M phi cytotoxicity was longer when M phi were preactivated by 100 ng/ml than 10 ng/ml of LPS in combination with IFN-gamma. Addition of indomethacin, an inhibitor of prostaglandin production, did not prevent the decay of M phi cytotoxicity but rather facilitated it even in the absence of L-arginine. Regardless of indomethacin, consecutive stimulation with LPS or LPS plus IFN-gamma during culture was effective in maintaining the tumoricidal activity at a high level. In addition, we found that M phi which had lost tumoricidal activity during culture in L-arginine deficient medium could be reactivated by LPS to attack tumor target cells.  相似文献   

20.
The recruitment of polymorphonuclear leukocytes (PMNs) from the vascular space into the lung interstitium and airspace is an early step in the host innate immune response to bacterial invasion of these sites. To determine the ability of intact bacteria to directly elicit PMN migration across an endothelial monolayer, we studied in vitro migration of PMNs across a monolayer of human pulmonary microvascular endothelial cells in response to Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli, as well as to purified E. coli LPS. Bacterial induction of PMN migration was dose dependent and elicited by > or =10(4) bacteria/ml of each of the species tested. Pretreatment of PMNs with blocking Abs to CD18 significantly inhibited migration of PMN in response to all stimuli tested, but had the most profound effect on migration to S. pneumoniae and S. aureus. Intact E. coli were 10 times more potent in inducing transmigration of PMNs than a corresponding amount of purified LPS. Bacterial induction of PMN migration did not correlate with up-regulation of surface endothelial ICAM-1 expression (purified LPS > intact E. coli > S. aureus and S. pneumoniae) nor up-regulation of VCAM-1 and E-selectin. Neutralizing Ab to ICAM-1 had no effect on PMN migration to any of the bacteria or to purified LPS. These findings demonstrate that diverse bacterial pathogens induce PMN migration across a pulmonary microvascular endothelial cell monolayer in a fashion that appears to be organism specific. In addition, intact bacteria elicit PMN-endothelial cell interactions distinct from those seen when purified bacterial products are used as agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号