首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antisera were produced from guinea-pigs against purified pig or rat cardiac tropomyosins and antigen-antibody interactions were analyzed by the micro-complement fixation technique. Immunoadsorption with purified tropomyosins coupled with CN Br-activated Sepharose 4B enabled us to establish that these antisera were only specific to tropomyosin and not to other contractile proteins. Direct cross-reactions and competition experiments performed with both the above antisera indicated quantitative differences in the maximum amount of complement fixed by tropomyosins from various heterologous species (man, beef, pig, rabbit, rat and mouse). These data provide direct evidence that mammalian cardiac tropomyosin is species-specific.  相似文献   

2.
3.
4.
5.
Ribonuclease S (RNase-S) is a complex that consists of two proteolytic fragments of bovine pancreatic ribonuclease A (RNase-A): the S-peptide (residues 1-20) and S-protein (residues 21-124). We have refined the crystal structures of three RNase-S complexes. The first two contain the full-length 20-residue S-peptide and were studied at pHs of 4.75 and 5.5. The third one consists of a truncated form of S-peptide (residues 1-15) and was studied at pH 4.75 as the reference structure for a series of mutant peptide complexes to be reported separately. Excluding residues 16-23 which are either missing (in the S15 complex) or disordered (in both S20 complexes), all three structures refined at 1.6-A resolution are identical within the estimated errors in the coordinates (0.048 A for the backbone atoms). The R-values, residual error, range from 17.4% to 18.6%. The final model of S20, pH 4.75, includes 1 sulfate and 84 water molecules. The side chains of 11 residues were modeled in two discrete conformations. The final structures were independent of the particular RNase-A or RNase-S used as a starting model. An extensive comparison with refined crystal structures of RNase-A reveals that the core of the molecule which is held together with extensive hydrogen bonds is in identical pattern in all cases. However, the loop regions vary from one structure to another and are often characterized by high B-factors. The pattern of thermal parameters appears to be dependent on crystal packing and correlates well with the accessibility calculated in the crystal. Gln60 is a conserved residue in all sequences known to date for this class of ribonucleases. However, it is the only residue that is clearly defined in an unfavorable position (phi = -100 degrees, psi = -130 degrees) on the Ramachandran plot. The origin of the substantial differences between RNase-A and RNase-S in stability to both acid and temperature denaturation and in susceptibility to proteolysis at neutral pH is not obvious in our visual comparison of these two structures.  相似文献   

6.
The formyl-methenyl-methylenetetrahydrofolate synthetase from chicken liver catalyzes the formation of the 10-formyl- and 5,10-methenyltetrahydrofolate cofactors via three enzymatic activities. In this report we define the kinetic relationships between the activities of this trifunctional protein. An investigation of the time course for 10-formyl cofactor synthesis by computer modeling indicates that commencing with tetrahydropteroyltriglutamate, the activities of the synthetase/cyclohydrolase couple act as separate enzymic species. In contrast, 10-formyl cofactor formation from the 5,10-methylene cofactor utilizing the dehydrogenase/cyclohydrolase couple is described by a single or interactive site model that partitions the 5,10-methenyl intermediate primarily (85%) to the 10-formyl product. An unusual characteristic of the latter coupled activities is the negligible cyclohydrolase activity toward exogenous 5,10-methenyl cofactor, which serves as substrate in the individual activity assay. This is based on (1) competitive inhibition by 5,11-methenyltetrahydrohomofolate against the 5,10-methenyl derivative in the cyclohydrolase-catalyzed hydrolysis but the absence of such inhibition in the dehydrogenase/cyclohydrolase couple and (2) a pulse-chase experiment showing the failure of chase 5,10-methenyl cofactor to dilute the 10-formyl product derived from the coupled activities. The result of this coupling is to minimize the concentration of the 5,10-methenyl species, consistent with its noninvolvement in de novo purine biosynthesis.  相似文献   

7.
In previous studies it was found that: (a) aspartate aminotransferase increases the aspartate dehydrogenase activity of glutamate dehydrogenase; (b) the pyridoxamine-P form of this aminotransferase can form an enzyme-enzyme complex with glutamate dehydrogenase; and (c) the pyridoxamine-P form can be dehydrogenated to the pyridoxal-P form by glutamate dehydrogenase. It was therefore concluded (Fahien, L.A., and Smith, S.E. (1974) J. Biol. Chem 249, 2696-2703) that in the aspartate dehydrogenase reaction, aspartate converts the aminotransferase into the pyridoxamine-P form which is then dehydrogenated by glutamate dehydrogenase. The present results support this mechanism and essentially exclude the possibility that aspartate actually reacts with glutamate dehydrogenase and the aminotransferase is an allosteric activator. Indeed, it was found that aspartate is actually an activator of the reaction between glutamate dehydrogenase and the pyridoxamine-P form of the aminotransferase. Aspartate also markedly activated the alanine dehydrogenase reaction catalyzed by glutamate dehydrogenase plus alanine aminotransferase and the ornithine dehydrogenase reaction catalyzed by ornithine aminotransferase plus glutamate dehydrogenase. In these latter two reactions, there is no significant conversion of aspartate to oxalecetate and other compounds tested (including oxalacetate) would not substitute for aspartate. Thus aspartate is apparently bound to glutamate dehydrogenase and this increases the reactivity of this enzyme with the pyridoxamine-P form of aminotransferases. This could be of physiological importance because aspartate enables the aspartate and ornithine dehydrogenase reactions to be catalyzed almost as rapidly by complexes between glutamate dehydrogenase and the appropriate mitochondrial aminotransferase in the absence of alpha-ketoglutarate as they are in the presence of this substrate. Furthermore, in the presence of aspartate, alpha-ketoglutarate can have little or no affect on these reactions. Consequently, in the mitochondria of some organs these reactions could be catalyzed exclusively by enzyme-enzyme complexes even in the presence of alpha-ketoglutarate. Rat liver glutamate dehydrogenase is essentially as active as thebovine liver enzyme with aminotransferases. Since the rat liver enzyme does not polymerize, this unambiguously demonstrates that monomeric forms of glutamate dehydrogenase can react with aminotransferases.  相似文献   

8.
Addition of ruthenium red to mitochondria isolated from brain, adrenal cortex, parotid gland and skeletal muscle inhibits further uptake of Ca2+ by these mitochondria but induces little or no net Ca2+ efflux; the further addition of Na+, however, induces rapid efflux of Ca2+. The velocity of the Na+-induced efflux of Ca2+ from these mitochondria exhibits a sigmoidal dependence on the [Na+]. Addition of Na+ to mitochondria exhibiting the most active Na+-dependent efflux of Ca2+ (brain and adrenal cortex) also releases Ca2+ in the absence of ruthenium red and, under these conditions, the mitochondria become uncoupled. It is concluded that the efflux of Ca2+ from these mitochondria occurs via a Na+-dependent pathway, possibly a Na+-Ca2+ antiporter, that is distinct from the ruthenium-red-sensitive carrier that catalyses energy-linked Ca2+-influx. The possible role of the Na+-dependent efflux process in the distribution of Ca2+ between the mitochondria and the cytosol is discussed. In contrast, mitochondria from liver, kidney, lung, uterus muscle and ileum muscle exhibit no Na+-dependent efflux of Ca2+.  相似文献   

9.
10.
11.
12.
We previously established a genetic assay for retroviral Gag polyprotein multimerization (J. Luban, K. B. Alin, K. L. Bossolt, T. Humaran, and S. P. Goff, J. Virol. 66:5157-5160, 1992). Here we use this assay to demonstrate homomeric interactions between Gag polyproteins encoded by six different retroviruses. Of the Gag polyproteins tested, only those encoded by closely related retroviruses formed heteromultimers. To determine the primary sequence requirements for human immunodeficiency virus type 1 Gag polyprotein multimerization, we studied the effects on multimerization of deletion and linker insertion mutations. Sequences necessary for this process were located between the C-terminal one-third of the capsid domain and the C terminus of the nucleocapsid domain.  相似文献   

13.
14.
15.
16.
Synopsis Glutaraldehyde reacts readily with various proteins in solution. With high concentrations of both, the solutions become yellow and many proteins form a gel. At low concentrations the reactions may be followed by the changes in the u.v. spectrum between 250 and 300 nm. The reverse reaction does not proceed to any detectable extent. The kinetics are pseudo-first-order. The activation energies for the reactions between proteins and glutaraldehyde were found to be about II kcal/mole. This suggests that the proteins have not been denatured to any marked extent by the glutaraldehyde fixation. The rates of reactions increase with pH. The rate of formation of glutaraldehyde-protein links per protein molecule glutarated is approximately I sec–1 mol–1 1.  相似文献   

17.
The abundance of different simple sequence motifs in plants was accessed through data base searches of DNA sequences and quantitative hybridization with synthetic dinucleotide repeats. Database searches indicated that microsatellites are five times less abundant in the genomes of plants than in mammals. The most common plant repeat motif was AA/TT followed by AT/TA and CT/GA. This group comprised about 75% of all microsatellites with a length of more than 6 repeats. The GT/CA motif being the most abundant dinucleotide repeat in mammals was found to be considerably less frequent in plants. To address the question if plant simple repeat sequences are variable as in mammals, (GT)n and (CT)n microsatellites were isolated from B.napus. Five loci were investigated by PCR-analysis and amplified products were obtained for all microsatellites from B. oleracea, B.napus and B.rapa DNA, but only for one primer pair from B.nigra. Polymorphism was detected for all microsatellites.  相似文献   

18.
A variety of albumin polymers were prepared and tested for binding with hepatitis B surface antigen (HBsAg): synthetic polymers cross-linked by either glutaraldehyde or carbodiimide; heat-aggregated polymers made by heating albumin solutions at 60 degrees C for 10 h with or without albumin stabilizer; and polymers isolated from fresh or long-stored commercial therapeutic albumin solutions. A sensitive solid-phase, competitive-inhibition radioimmunoassay, which can detect as little as 10 ng of glutaraldehyde-cross-linked human albumin polymer (PHALB-G), was developed and used to measure binding. The binding of PHALB-G with HBsAg was 150- to 1,000-fold greater than that of any other albumin polymer. Glutaraldehyde-cross-linked bovine albumin polymer showed no binding. Albumin monomer and dimer fractions produced by glutaraldehyde treatment exhibited some binding, albeit much weaker than PHALB-G. As measured by a direct-binding assay with solid-phase PHALB-G, the attachment of HBsAg particles from sera positive for antibody to the e antigen was less efficient than that from sera positive for e antigen, even when all sera were tested at equal HBsAg concentrations. In protein blot experiments with radiolabeled albumin preparations, PHALB-G bound almost exclusively to HBsAg polypeptide P31 and showed no binding with the major polypeptides P23 and P26. None of the other radiolabeled albumin polymers was reactive. These results indicate that the interaction between PHALB-G and HBsAg is not due to polymerization of albumin per se, but rather is unique and site specific.  相似文献   

19.
Sheep liver mitochondrial aldehyde dehydrogenase reacts with 2,2'-dithiodipyridine and 4,4'-dithiodipyridine in a two-step process: an initial rapid labelling reaction is followed by slow displacement of the thiopyridone moiety. With the 4,4'-isomer the first step results in an activated form of the enzyme, which then loses activity simultaneously with loss of the label (as has been shown to occur with the cytoplasmic enzyme). With 2,2'-dithiodipyridine, however, neither of the two steps of the reaction has any effect on the enzymic activity, showing that the mitochondrial enzyme possesses two cysteine residues that must be more accessible or reactive (to this reagent at least) than the postulated catalytically essential residue. The symmetrical reagent 5,5'-dithiobis-(1-methyltetrazole) activates mitochondrial aldehyde dehydrogenase approximately 4-fold, whereas the smaller related compound methyl l-methyltetrazol-5-yl disulphide is a potent inactivator. These results support the involvement of mixed methyl disulphides in causing unpleasant physiological responses to ethanol after the ingestion of certain antibiotics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号