首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of surface type and area were shown to be important in the yield of cell-size liposomes, but not in determining their size. The liposomes were prepared by dissolving lipids in a chloroform-methanol solution and then evaporating the solvent under nitrogen in the presence of glass beads. After evaporation of the solvent, which was rapid due to the increased surface area, the dried lipids were then swollen in water at high temperatures (higher than the phase transition of the lipids), which led to formation of giant liposomes. The number of liposomes prepared in the presence of pyrex glass beads, which increase more than 100-times the surface area of lipid-glass contact, is more than 5-times larger than in the control experiments without glass beads. The yield of liposomes in the presence of another type of glass bead was almost the same as in the control experiments. These effects may be due to long- and short-range intermolecular interactions in the glass/water/lipid system.  相似文献   

2.
Liposomes formed by vortexing and passed through polycarbonate surface retention membranes showed appreciable differences in filtration behavior depending on the temperature of filtration relative to the liposome gel-liquid crystal transition temperature. Below transition, liposomes were filterable and size distributions could be determined; the cumulative volume distributions were log-normal. Above transition, liposomes were not filterable: smaller liposomes were formed until a limiting size was reached. These results suggest that liquid crystal liposome size distributions cannot be determined by filtration. This filtration behavior is a physical property of liposomes, related to the gel-liquid crystal transition, not previously reported. This property could be exploited as a new method for controlling liposome size distributions, but the implications for lipid membranes, including biological membranes, are general.  相似文献   

3.
This paper presents a simple, new approach to the determination of size, shape, surface area, and deformability information for cells, notably red blood cells. The results are obtained by combining experimental measurements from resistive pulse spectroscopy (an extension of electronic cell-sizing methodology) with theoretical calculations for model cell systems. Assuming constancy of surface area and approximating red cell shapes by both prolate and oblate ellipsoids of revolution, values are determined for cell shape factor and volume under a variety of conditions. For red blood cells under low-stress conditions, shape factor, volume, and surface area results are found to be consistent with those available from the literature, when the oblate model is used. The applicability of this approach for determination of red cell properties under altered conditions is demonstrated by results for cell volume, at varying osmotic pressure and mechanical shear (tensile) stress. By quantitating the change in cell shape with stress, a new numerical scale for measuring cell deformability is also obtained, and data are presented on its variation for red cells at different osmolalities, over the range of 140 to 500 mOsm.  相似文献   

4.
It is known that liposomes transform their shapes sequentially through one of several transformation pathways. Using the mechanical principle of the least bending energy of membranes, we investigate the stability and shape transformation of liposomes with geometrical symmetry. We have done this by computer simulations and theoretical analyses, in which three-dimensional liposome shapes have been generated by the modified Cassini equation. We show first that there are energetically stable liposome shapes having intrinsic geometrical symmetry. We find that by reducing the volume, the stable shape can change from a circular biconcave shape as in red blood cells, to elliptical, triangular, square, and other polygonal shapes. It is also found that the preceding two results hold true irrespective of the overall surface area of liposome.  相似文献   

5.
Lipoplexes with different surface charge were prepared from a short oligonucleotide (20 mer, dsAT) inserted into liposomes of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE). The starting liposomes were prepared by two different procedures, i.e. progressive dsAT addition starting from plain liposomes (titration) and direct mixing of dsAT with pure liposomes (point to point preparation). Lipoplexes were characterized from a molecular point of view by Electron Spin Resonance (ESR) of a cationic spin probe and by Nuclear Magnetic Resonance. Structural and surface features were analysed by Zeta potential (zeta) measurements and Cryo-TEM micrographs. The complete set of results allowed to demonstrate that: i) the interactions between dsAT and cationic lipids were strong and occurred at the liposome surface; ii) the overall shape and physicochemical properties of liposomes did not change when short nucleic acid fragments were added before surface charge neutralization; iii) the bilayer structure of the lipids in lipoplexes was substantially preserved at all charge ratios; iv) the physical status of lipoplexes with electrical charge far from neutrality did not depend on the preparation method.  相似文献   

6.
The lamellarity of liposomes is an important parameter to be controlled in liposomal delivery–release applications. A practical estimate of the degree of liposome lamellarity can be obtained by measuring the relative external surface area of the liposomes using a chemical assay. All such assays are based on a signal change caused by exposed marker lipids on reaction with a specific externally added reagent. However, a quantitative determination is often distorted by background reactions and contributions of internal lipid labeling. In the so-called TNBS assay, the marker lipid is phosphatidylethanolamine (PE) and the externally added reagent is TNBS (2,4,6-trinotrobenzene sulfonate). Mechanistic aspects of the TNBS assay were considered for improving the assay. Internal lipid labeling via PE flip-flop and/or TNBS permeation was minimal not only in cholesterol-containing liposomes but also in cholesterol-free liposomes if in the latter case membrane fluidity was decreased by slightly increasing the PE content. Compared with earlier versions of the TNBS assay, the amount of marker lipid and the time for analysis could be reduced considerably. The elaborated protocol was also applied to liposomes prepared from lipidic egg yolk isolates, offering a simple and inexpensive method for the development and in-process control of new liposome formation technologies.  相似文献   

7.
Abstract

We describe the preparation of small unilamellar and multilamellar vesicles from hexadecylphosphocholine, cholesterol and 1,2-dipalmitoyl-sn-glycero-phosphoglycerol in the molar ratio 4/5/1. Particle size and chemical stability of two types of liposomes, small unilamellar vesicles and lyophilized, freshly resuspended multilamellar vesicles were proved to be stable for at least 12 months. Compared to hexadecylphosphocholine in free form, liposomal hexadecylphosphocholine showed remarkably reduced hemolysis which did not change during storage. Fluorescence microscopy showed the uptake of propidium iodide containing hexadecylphosphocholine liposomes by KB and MDA-MB 231 tumor cells. Free propidium iodide was not incorporated into these cells. Although cytotoxicity seemed to be reduced in liposomal preparations, hexadecylphosphocholine liposomes still affected cultured tumor cells to a great extent. In relatively low concentrations they induced shape alteration, smoothing of the cell surface and blebbing.  相似文献   

8.
Abstract

The effects of liposome composition and gamma irradiation on the phase transition, size, zeta potential and pH were investigated using factorial designs. In addition, the effect of irradiation on the leak-in rate of calcein was evaluated for one of the liposome composition. The liposomes were stored for 6 months in order to reveal any possible long term effects. The phospholipids used were dipalmitoyl phosphatidyl choline (DPPC) or egg phosphatidyl choline (egg PC). Charge was introduced to the liposomal bilayers by the addition of 10% dipalmitoyl phosphatidyl glycerol (DPPG) or egg phosphatidyl glycerol (egg PG). The liposome-suspensions were obtained by the extrusion method. After gamma irradiation changes in the phase transition, zeta potential and pH of the liposomes were observed. The size of the liposomes was not affected by the irradiation, but the irradiation prevented the neutral DPPC-liposomes from aggregation. This was confirmed by cryo-electron microscopy. No change in the leak-in rate was observed. During storage, a significant increase in size was observed only for the non-irradiated egg PC-liposomes. For all the liposome-suspensions composed of unsaturated phospholipids, a significant drop in pH and an increased zeta potential (more negative) was measured. Changes in the phase transition for the neutral DPPC-liposomes (non-irradiated and irradiated) were observed during gamma irradiation.  相似文献   

9.
Co-delivery of chemotherapeutic agents using nanocarriers is a promising strategy for enhancing therapeutic efficacy of anticancer agents. The aim of this work was to develop tamoxifen and imatinib dual drug loaded temperature-sensitive liposomes to treat breast cancer. Liposomes were prepared using 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), monopalmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (MPPC), and different surface active agents. The liposomes were characterized for the average particle size, zeta potential, transition temperature, and drug release below and above liposomal transition temperature. The temperature-sensitive liposomes co-encapsulated with tamoxifen and imatinib were investigated for their synergistic activity against MCF-7 and MDA-MB-231 breast cancer cells. The liposomal nanoparticles showed a transition temperature of 39.4?°C and >70% encapsulation efficiency for tamoxifen and imatinib. The temperature-responsive liposomes showed more than 80% drug released within 30?min above transition temperature. Dual drug loaded liposomes showed synergistic growth inhibition against MCF-7 and MDA-MB-231 breast cancer cells. Co-delivery of tamoxifen and imatinib using temperature-sensitive liposomes can be developed as a potential targeting strategy against breast cancer.  相似文献   

10.
Satoshi Hoshina 《BBA》1981,638(2):334-340
Temperature-dependent spectral changes of chlorophyll a (Chl a) incorporated into liposomes of two types of phosphatidylcholine are studied. When Chl a incorporated into the liposomes is cooled down to 5°C from the temperature of the gel-to-liquid crystalline phase transition of the lipid, the red shift as well as the increase in half-bandwidth of the red peak of Chl a are only slight. By measuring the difference spectra produced by substracting the absorption spectrum at the phase transition temperature of the lipid from that at lower temperature, it is shown that the component absorbing at longer wavelength (675–685 nm) than the peak of the red maximum (about 670 nm) significantly increases at the expense of the component absorbing at shorter wavelength (657–668 nm). The positions of positive and negative peaks depend on the temperature and the molar ratio of the lipid to Chl a. The absorbance change is most pronounced on cooling below the phase transition temperature of the lipid. The temperature-induced absorbance change is almost completely reversible. The results indicate that the aggregated forms of Chl a in liposomes can be spectrophotometrically detected in the gel phase of the lipid.  相似文献   

11.
Incorporation of vitamin A aldehyde (retinal) into liposomes had an inhibitory effect on the amount of human complement protein bound in the presence of specific antiserum. The total membrane-bound protein was directly measured on liposomes which were washed after incubation in antiserum and fresh human serum (complement). At every concentration of complement, decreased protein binding was found with liposomes which contained retinal. Binding of the third component of complement (C3) was also measured directly on washed liposomes and was found to be decreased in the presence of retinal. The diminution in protein binding due to retinal was not caused by differences in the amount of antibody bound and this was shown by two experiments. First, specific antibody protein binding to liposomes was directly measured and was essentially unaffected by retinal. Second, liposomes were prepared from lipid extracts of sheep erythrocytes. These liposomes were used as as immunoadsorbants to remove antisheep erythrocyte antibodies. The immunoadsorbant capacity was the same in both the presence and the absence of retinal. A further conclusion from these experiments was that retinal did not change the number of liposomal glycolipid antigen molecules available for antibody binding and thus presumably did not change the total number of lipid molecules present on the outer surface of the liposomes. Retinal did have an effect on the geometric structure of the liposomes. Size distribution measurements were performed in the diameter range of 1-6.35 mum by using an electronic particle size analyzer (Coulter Counter). Liposomes containing retinal were shifted toward smaller sizes and had less total surface area and volume. It was suggested that retinal-containing liposomes may have had a tighter packing of the molecules in the phospholipid bilayer. This effect of retinal on liposomal structure may have been responsible for the observed decreased binding of C3 and total complement protein.  相似文献   

12.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

13.
There is a close association between changes in cell volume and shape transition of Herpetomonas samuelpessoai. A rearrangement of the spatial organization of subpellicular microtubules provides the structural basis for the process of shape transition. A model is presented which accounts for the relationship between microtubule arrangement, changes in cell volume, and transition from elongate (promastigote) to the more spherical (para- and opisthomastigote) forms. Its central feature consists of an asymmetrical departure from the regularly helicoidal distribution of the microtubules upon induction of transition. While some microtubules become more linear, others assume a compensatory overspiralized course, allowing for a modification of volume with slight or no change of the cell surface area.  相似文献   

14.
Nonsymmetrical polymethine dyes are shown to be applied as a new approach in the studies of phospholipid membrane microviscosity. The method requires determination of the intensity ratio for the long-wave length (Ig) and short-wave length (Ik) bands of fluorescence spectra in the region of 730-770 nm at exitation 600 nm. It allows determination of microviscosity by comparative measurements of the fluorescence parameter Ig/Ik in the model medium of the known viscosity (glycerol) and the object under study. Microviscosity in egg phosphatidylcholine vesicules (liposomes) is found to be 0.6-1.2 P. It depends on the surface curvature (size of vesicle), cholesterol content and temperature. It the studies of dimiristoylphosphatidyl choline liposomes the changes in microviscosity at the phase transition temperature are shown to be from 4.5 to 1.1 P. The transition temperature is 24.5 degrees C, the transition range being 2.2 degrees C. The results of this work demonstrate the advantages of the suggested approach to study mobility in phospholipid membranes and confirm it to be promising to study natural membranes and whole cells.  相似文献   

15.
Three kinds of copolymers of N-isopropylacrylamide (NIPAM) with the same conformational transition temperature and varying transition endotherms were synthesized with N-acryloylpyrrolidine (APr), N,N-dimethylacrylamide (DMAM), and N-isopropylmethacrylamide (NIPMAM) as the comonomers. Two dodecyl groups were incorporated into the termini of these copolymers as an anchor for the fixation to a liposomal membrane. Egg yolk phosphatidylcholine liposomes having these copolymers were prepared and their temperature-sensitive contents release and association properties were investigated. While these copolymer exhibited a conformational transition at ca. 40 degrees C, DeltaH for the transition increased in the order of poly(APr-co-NIPAM) < poly(DMAM-co-NIPAM) < poly(NIPMAM-co-NIPAM). The liposomes containing poly(NIPMAM-co-NIPAM) showed a drastic release enhancement of entrapped calcein above the transition temperature, whereas the liposomes with poly(DMAM-co-NIPAM) and those with poly(APr-co-NIPAM) exhibited moderate and slight enhancement of calcein release above that temperature, respectively. On the contrary, the liposomes containing poly(APr-co-NIPAM) showed significant aggregation above the transition temperature, but the aggregation was hardly observed for the liposomes having poly(NIPMAM-co-NIPAM), indicating that poly(APr-co-NIPAM) more efficiently made the liposome surface hydrophobic. Thus, we concluded that the copolymer with a large DeltaH is suitable for obtaining functional liposomes with a temperature-sensitive contents release property, whereas the copolymer with a small DeltaH is appropriate for preparing functional liposomes with a temperature-sensitive surface property.  相似文献   

16.
Blume A 《Biophysical chemistry》1979,10(3-4):371-378
The influence of 1.4.-dioxan on the bilayer phase transition of various phospholipids was studied by differential scanning calorimetry and turbidity measurements. The addition of 1.4.-dioxan to lipid bilayers decreases the transition temperature Tm increases the transition enthalpy of the transition. The cooperativity of the transition is unaffected. The phospholipid monolayer transition from the liquid-condensed to the liquid-expanded phase was measured by recording area versus temperature curves at constant surface pressure (isobars). The monolayer transition temperature at constant surface pressure is increased when 1.4.-dioxan is added to the subphase. The change in molecular area becomes larger. A comparison of monolayer isobars on water and water/dioxan as subphase at constant surface tension rather than surface pressure leads to a decrease of the transition temperature on water/dioxan as subphase. This decrease as well as the larger change in molecular area at the monolayer transition can be correlated to the decrease in Tm and the increase in the transition enthalpy of the corresponding bilayer system. 1.4.-Dioxan seems to accumulate at the lipid head group/water interface, thus lowering the tension of the bilayer membrane. This cyclic ether can be used for altering the characteristics of bilayer membranes without disturbing the lipid chain organization.  相似文献   

17.
A method was developed for determining the surface area and volume of rice mesophyll cells of elaborate configuration. The method was employed to calculate these indices in several types of rice mesophyll cells found in seventy samples (53 species) of diverse origin coming from Japan, China, Korea, India, Nepal, Australia, France, Italy, Uzbekistan, Afghanistan, and Krasnodar and Primorskii regions. The cultivars of diverse geographic origin varied in cell shape and size due to the number, size, and arrangement of chloroplasts. When the volumes and surface areas of leaf mesophyll cells were compared using the method reported herein and a simple empirical model of the cell as a single ellipsoid, the two methods produced relatively similar data for cell volume; however, the surface area calculated by the former method was about two times larger than in the latter case. The method described in this paper allows for accurate calculations of the volume and surface area of rice mesophyll cells when data are available on the cell shape and linear dimensions and the number of chloroplasts per cell.  相似文献   

18.
Surface modification of liposomes with targeting ligands is known to improve the efficacy with reduced untoward effects in treating infective diseases like visceral leishmaniasis (VL). In the present study, modified ligand (ML), designed by modifying polysaccharide with a long chain lipid was incorporated in liposomes with the objective to target amphotericin B (Amp B) to reticuloendothelial system and macrophages. Conventional liposomes (CL) and surface modified liposomes (SML) were characterized for size, shape, and entrapment efficiency (E.E.). Amp B SML with 3% w/w of ML retained the vesicular nature with particle size of ~205 nm, E.E. of ~95% and good stability. SML showed increased cellular uptake in RAW 264.7 cells which could be attributed to receptor-mediated endocytosis. Compared to Amp B solution, Amp B liposomes exhibited tenfold increased safety in vitro in RAW 264.7 and J774A.1 cell lines. Pharmacokinetics and biodistribution studies revealed high t 1/2, area under the curve (AUC)0–24, reduced clearance and prolonged retention in liver and spleen with Amp B SML compared to other formulations. In promastigote and amastigote models, Amp B SML showed enhanced performance with low 50% inhibitory concentration (IC50) compared to Amp B solution and Amp B CL. Thus, due to the targeting ability of ML, SML has the potential to achieve enhanced efficacy in treating VL.  相似文献   

19.
Monosialogangliosides (GM) purified from bovine brain were incorporated into circular dichroism (CD)-active liposomes and the effects of GM on the membrane dynamics were studied by CD spectroscopy. In the presence of 7 mol% of GM, the phase transition temperature (Tc) of the membrane increased by ca. 10 degrees C compared with the membrane without GM and characteristic CD spectra were observed for CD-active liposomes incorporating GM at low temperature. Asialogangliosides had no effect on the CD spectra or Tc. We have also studied the role of GM in reducing leakage of [3H]sucrose from liposomes composed of egg phosphatidylcholine, dipalmitoyl phosphatidic acid, cholesterol and alpha-tocopherol with a molar ratio of 4 : 1 : 5 : 0.1 in the presence of human plasma at 25 degrees C. The half-life of [3H]-sucrose leakage was 173 h for liposomes incorporating 7 mol% of GM. On the other hand, the half-lives for liposomes incorporating 7 mol% of asialogangliosides and liposomes without glycolipids were 45 and 42 h, respectively. These results indicate that sialic acid on the membrane surface contributes to the increase of Tc, to the change of the aggregation state of phospholipids and to the stabilization of liposomes in plasma.  相似文献   

20.
The optical spectra of the hemin-lipophilic imidazole complex incorporated into liposomes prepared from three types of phosphatidylcholine were studied at various temperatures. The Soret peak of the system with dipalmitoyl- and dimyristoyl-phosphatidylcholine liposomes showed a marked bathochromic shift at the phase transition temperature, but in egg yolk phosphatidylcholine liposomes no spectral change was observed in the temperature range of 10° to 50°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号