共查询到20条相似文献,搜索用时 0 毫秒
1.
Various techniques of DNA immobilization onto nitrocellulose and nylon microporous membranes have been compared. Despite a strong primary adsorption of DNA onto these membranes during blotting procedures, poor retention of the target DNA and low hybridization signals are obtained after hybridization and washings. Covalent cross-linking of DNA upon UV irradiation leads to a quantitative immobilization of target DNA. Quantum yield of DNA photoimmobilization estimated for a single base in DNA is about 10(-4). UV irradiation dose sufficient for immobilization of DNA fragment of a known length can be calculated by the formula Ilc = (22.3 +/- 4.8) c/l, where l is the DNA fragment length (in base pairs), c is the DNA part (%) to be immobilized. The UV irradiation dose about 0.6-0.8 kJ/m2 is optimal for most hybridization experiments. Doses higher than 0.8-1 kJ/m2 may cause a loss in the hybridization efficiency. Under optimal immobilization conditions, hybridization signals increasing five-fold for nitrocellulose membranes and fifty-fold for uncharged nylon membranes as compared with baking these membranes in vacuum. 相似文献
2.
Biological lipid autoxidation has been studied in a model system composed of sonicated phospholipids as substrate and electron transfer proteins found in membranes as possible catalysts. Heme compounds, flavoproteins, and iron-sulfur proteins were examined for their ability to initiate lipid autoxidation. Among many heme compounds tested, the most active were hematin ?microperoxidase ? methemoglobin > cytochrome c. With fresh preparations of phospholipids, reaction rates (nanomoles of oxygen/minute nanomoles of heme) ranged from 5 (cytochrome c) to 350 (hematin). Only the oxidized heme compounds were active as catalysts. Reduced heme compounds, flavoproteins and riboflavin were inactive. In the presence of heme compounds, aged preparations of sonicated phospholipids were much more rapidly oxidized than fresh preparations. They also had a higher content of fatty acid hydroperoxides as judged from their characteristic diene absorption peak at 234 nm. This observation agrees with the postulated mechanism of lipid autoxidation by heme compounds, namely, homolytic scission of preformed fatty acid hydroperoxides. Iron-sulfur proteins were also active as initiators of lipid autoxidation when destabilized in the presence of an appropriate iron chelator (o-phenanthroline or 2,2′-bipyridine) or a chaotropic ion. Oxygen uptake rates (nanomoles of oxygen/minute × milligrams of protein) varied from about 200 for an iron-sulfur protein isolated from complex I to about 5500 for Clostridium pasteurianum ferredoxin. However, per nanomole of labile sulfide, the rates for all active iron-sulfur proteins were 4–7 nmol of oxygen/min × nmol of labile sulfide.Superoxide-generating systems did not initiate lipid autoxidation, nor did erythrocuprein inhibit the autoxidations induced by heme compounds or ferredoxin. However, lipid oxidations induced by two other iron-sulfur proteins were partially inhibited by erythrocuprein. It is concluded that in the above system Superoxide anion is neither an initiator nor an obligatory intermediate of lipid autoxidation. 相似文献
3.
We have developed a new technique for detecting binding of interleukin 2 (IL-2) to cells. This technique involves incubating the cells with IL-2 and then analysing the cell surface with specific anti-IL-2 antibodies and flow cytometry. This binding was only detected on tumor cells that possessed the p55 subunit of the IL-2 receptor. The role of p55 was ascertained by inhibition of the binding with a monoclonal antibody to p55. Although p55 is necessary for cytometrically detected IL-2 binding, further studies demonstrated that p55 is not sufficient. Thus, cytometrically-detected binding is likely to involved the contribution of other IL-2 surface receptors. Interleukin-2 binding to peripheral blood T lymphocytes and to a non-transformed T-cell clone was also detected cytometrically and it was shown that this binding is regulated by the activation status of the cells. Whereas IL-2 binding to quiescent T cells could not be detected, upon activation abundant binding was seen. The functional consequences of this type of cellular binding were studied. Interleukin-2 binding to cells during a short pulse was shown to have significant long-term consequences both for T-cell proliferation and for the enhancement of major histocompatibility complex (MHC)-non-restricted cytotoxicity. 相似文献
4.
Summary Lipid transfer proteins, differing in their specificity for the transfer of lipids and for the surfaces on which they act, have been purified from various mammalian tissues and subsequently characterized. Several of their properties make them useful research tools. They have been used alone or with other techniques to study the distribution and mobility of phospholipids in artificial vesicles and in natural membranes, and have been used to create asymmetric phospholipid vesicles.Lipid transfer proteins are capable of altering the lipid composition of membranes by introducing new lipids or by depletion of existing lipids. Some of the transfer proteins can effect a net transfer of phospholipids, glycosphingolipids and cholesterol from one structure to another, whereas others appear to act primarily in promoting exchange. Some lipid transfer proteins are capable of introducing spin labeled and fluorescent lipid analogs into the outer surface of membranes. Because lipid transfer proteins do not seem to alter membrane lipid asymmetry or permeability of membranes, they are useful tools for studying the effect of lipid substitution on membrane-mediated transport processes and on various membrane-bound enzyme systems.Abbreviations PA
phosphatidic acid
- PC
phosphatidylcholine
- PE
phosphatidylethanolamine
- PI
phosphatidylinositol
- PG
phosphatidylglycerol
- PS
phosphatidylserine
- DPG
diphosphatidylglycerol
- SPH
sphingomyelin
- Gm
t
II3--N-Acetylneuraminosylgangliotetraglycosylceramide
- GbOse4Cer
globotetraglycosylceramide
Career Investigator of C.O.N.I.C.E.T. (Argentina)Career Investigator of the American Heart Association. 相似文献
5.
V S Markin V S Sokolov L I Bogulavsky L S Jaguzhinsky 《The Journal of membrane biology》1975,25(1-2):23-45
The electric properties of the bilayer lecithin membranes have been studied in the presence of the antibiotic nigericin. When the antibiotic concentration is about 10(-7) ohm-1 cm-2. The potassium ion concentration gradient gives rise to a transmembrane potential of the order of 40 mV per 10-fold concentration gradient with the side of the higher potassium concentration negative. The transmembrane potential produced by the hydrogen ion concentration gradient is a function of the potassium ion concentration which is equal on both sides of the membrane. For low potassium ion concentrations the hydrogen potential has the expected polarity with the solution having higher concentration of protons negative. For potassium ion concentrations exceeding 0.03 M the hydrogen potential has the reverse polarity. This unexpected result cannot be accounted for in terms of the available simple hypotheses about the charge transport mechanism for nigericin in BLM. In order to account for the experimental results obtained, a theoretical approach has been developed based on the assumption that charge is transported across the membrane by nigericin dimers. The theoretical predicitons are in satisfactory agreement with the experimental results. The model also yields some predictions which may be verified in future experiments. 相似文献
6.
7.
C Grignon 《Biochimie》1999,81(6):577-596
Since the beginning of the 1990s, our knowledge of the protein equipment of plant membranes progresses at an accelerating pace, owing to the irruption of molecular biology tools and genetics strategies in plant biology. Map-based cloning strategies and exploration of EST databases rapidly enrich the catalog of cDNA or gene sequences expected to code for membrane proteins. The accumulation of 'putative' membrane proteins reinforces the need for structural, functional and physiological information. Indeed, ambiguities often exist concerning the association to a membrane, the membrane identity and the topology of the protein inserted in the membrane. The combination of directed mutagenesis and heterologous expression of plant genes in various systems and plant reverse genetics has opened the possibility to study molecular and physiological functions. This review will emphasize how these tools have been essential for the exciting recent discoveries on plant terminal membrane proteins. These discoveries concern a variety of transport systems for ions, organic solutes including auxin, water channels, a large collection of systems suspected to act as receptors of chemical signals, proteins thought to control vesicle trafficking and enzymatic systems. 相似文献
8.
Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation. 总被引:2,自引:1,他引:2
下载免费PDF全文

L V Lotti L Lanfrancone E Migliaccio C Zompetta G Pelicci A E Salcini B Falini P G Pelicci M R Torrisi 《Molecular and cellular biology》1996,16(5):1946-1954
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. 相似文献
9.
Growth and differentiation of opossum kidney cells on microscopically transparent microporous membranes 总被引:2,自引:0,他引:2
The growth and differentiation of opossum kidney cells on the recently-developed microscopically transparent microporous membrane are described. Confluent monolayers grown on membranes had twice the cell density of monolayers grown on plastic. Electron microscopy revealed junctional complexes in membrane-grown cells as well as in those cells grown on plastic. Cells grown on membranes, however, displayed more numerous and longer microvilli in addition to demonstrating a greater growth activity. There was an approximate two-fold increase in sodium-dependent phosphate transport per unit area by cells grown on membranes compared to the transport by cells grown on plastic. Phosphate transport by monolayers grown on both membranes and plastic was inhibited by parathyroid hormone (PTH). 相似文献
10.
GTP-binding proteins have been identified on the membranes of highly purified dextran-filled lysosomes (dextranosomes) and Triton-filled lysosomes (tritosomes) obtained from rat liver. Autoradiography of blots of lysosomal membrane proteins incubated with [alpha-32P]GTP revealed the presence of several specific GTP-binding proteins with a relative molecular mass (M(r)) predominantly in the range of 26-30 kDa. These GTP-binding proteins migrated slower in polyacrylamide gels than purified c-Ha-ras protein expressed in E. coli, whose apparent M(r) was 23 kDa in the same blot. The relative contents of GTP-binding proteins in lysosomal membranes were comparable or greater than that of plasma membranes and of microsomes. Chemical extraction showed that lysosomal GTP-binding proteins were more tightly associated with the membranes than with microsomal GTP-binding proteins. The possible involvement of lysosomal GTP-binding proteins in cellular functions including vacuolar (lysosomal) acidification and organellar dynamics are discussed. 相似文献
11.
T A Schroer 《Current opinion in cell biology》1991,3(1):133-137
The motility of intracellular components, and of the cell as a whole, is mediated by cytoplasmic motor proteins. This review discusses what is known about the binding of cytoplasmic motors to membranes. Mechanisms by which these interactions may result in observed motile phenomena are proposed. 相似文献
12.
13.
A Baroin D D Thomas B Osborne P F Devaux 《Biochemical and biophysical research communications》1977,78(1):442-447
We have applied the technique of saturation transfer electron paramagnetic resonance to the study of spin labeled membrane-bound bovine rhodopsin. Based on the comparison with theoretical and experimental spectra corresponding to isotropic slow motion, the present data leads to a rotational correlation time for the membrane-bound rhodopsin molecule of 20 μsec at 20°C. Bleaching does not appear to influence the motion of the protein while addition of glutaraldehyde (5%) stops its rotation completely. These results are in good agreement with what is known about the motion of the membrane-bound rhodopsin, establishing the applicability of the saturation transfer technique to the study of slow anisotropic motions of membrane-bound proteins. 相似文献
14.
15.
We describe a method using a semi-dry gel electro-blotter to transfer RNA from standard agarose-formaldehyde denaturing gels in less than 30 min. The method requires equilibrating the gel in a low ionic strength buffer. The transfer is done under high-current and low-voltage conditions. This method maintains the overall sharpness of the bands on the final autoradiogram while shortening the time required for Northern transfer by approximately 12 hours. 相似文献
16.
17.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three catagories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion. Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (deltaH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region. Cytochrome c and A1 protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and deltaH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer. Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the deltaH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a deltaH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed. 相似文献
18.
Based on the assumption that electron transfer between globular proteins occurs by a collective excitation of polaron type, the dependence of the rate of this process on the distance between the donor and acceptor centers with regard to their detailed electron structure was calculated. The electron structure of the heme was calculated by the quantum-chemical MNDO-PM3 method. The results were compared with experimental data on interprotein and intraglobular electron transfer. It is shown that, in the framework of this model, the electron transfer is not exponential and does not require a particular transfer pathway since the whole protein macromolecule is involved in the formation of the electron excited state. 相似文献
19.
Proteins of the chromaffin granule membrane were covalently labeled in situ with sulfhydryl-specific fluorophores. Using MIANS (maleimide iodoaminonaphthyl sulfonate) as the donor and fluorescein mercury acetate or fluorescein-5-maleimide as the acceptor, Förster fluorescence resonance energy transfer (FRET) could be employed to measure the degree of inter-membrane and intra-membrane protein-protein contact upon Ca2+-induced aggregation of the membranes. The four major findings were: (1) Raising the Ca2+ concentration to approx. 500 μM causes the proteins to aggregate in the plane of the membrane. This is demonstrated by Ca2+-induced increases in the fluorescence resonance energy transfer in double labeled membranes. This effect is not protein-concentration dependent and occurs at calcium concentrations too low for granule aggregation, implying intra-membrane protein clustering or patching. To our knowledge this is the first direct demonstration of the fluid mosaic nature of subcellular organelles. (2) If two sets of granules are labeled separately, Ca2+-induced aggregation brings at least 74% of the labeled proteins into close transmembrane proximity. This effect is also observed at 10–100-fold slower rates in the absence of calcium and can be greatly reduced by depleting the granule membrane of labeled peripheral proteins. It is enhanced if the granules are aggregated by Ca2+ or K+. We conclude that (some) peripheral proteins can transfer from one membrane surface to another. (3) Aggregation of separately labeled sets of membranes by Ca2+ also produces transmembrane energy transfer since: (a) the Km for Ca2+-induced quantum transfer is in the same range as the Km for aggregation; (b) the reaction is protein-concentration dependent; (c) reversal of aggregation also (partially) reverses donor quenching. (4) A kinetic analysis of the transmembrane effect shows it to be 5–10-fold slower than aggregation itself, supporting earlier suggestions (Haynes, D.H., Kolber, M. and Morris, S.J., (1979) J. Theor. Biol. 81, 713–743) that lipid and protein rearrangements are secondary to granule membrane aggregation. 相似文献