首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact mitochondria were incubated with and without calcium in solutions of chenodeoxycholate, ursodeoxycholate, or their conjugates. Glutamate dehydrogenase, protein and phospholipid release were measured. Alterations in membrane and organelle structure were investigated by electron paramagnetic resonance spectroscopy. Chenodeoxycholate enhanced enzyme liberation, solubilized protein and phospholipid, and increased protein spin label mobility and the polarity of the hydrophobic membrane interior, whereas ursodeoxycholate and its conjugates did not damage mitochondria. Preincubation with ursodeoxycholate or its conjugate tauroursodeoxycholate for 20 min partially prevented damage by chenodeoxycholate. Extended preincubation even with 1 mM ursodeoxycholate could no longer prevent structural damage. Calcium (from 0.01 mM upward) augmented the damaging effect of chenodeoxycholate (0.15-0.5 mM). The combined action of 0.01 mM calcium and 0.15 mM chenodeoxycholate was reversed by ursodeoxycholate only, not by its conjugates tauroursodeoxycholate and glycoursodeoxycholate. In conclusion, ursodeoxycholate partially prevents chenodeoxycholate-induced glutamate dehydrogenase release from liver cell mitochondria by membrane stabilization. This holds for shorter times and at concentrations below 0.5 mM only, indicating that the different constitution of protein-rich mitochondrial membranes does not allow optimal stabilization such as has been seen in phospholipid- and cholesterol-rich hepatocyte cell membranes, investigated previously.  相似文献   

2.
In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were determined and compared to the actions of glucagon, which led to an increase not only of glucose output but also of lactate uptake. 1. Nerve stimulation caused an enhancement of the activity of glycogen phosphorylase a to 300% and a decrease of the activity of glycogen synthase I to 40%, while it left the activity of pyruvate kinase unaltered. Glucagon, similarly to nerve action, led to a strong increase of glycogen phosphorylase and to a decrease of glycogen synthase; yet in contrast to the nerve effect it lowered pyruvate kinase activity clearly. 2. Nerve stimulation increased the levels of glucose 6-phosphate and of fructose 6-phosphate to 200% and 170%, respectively; glucagon enhanced the levels to about 400% and 230%, respectively. The levels of ATP and ADP were not altered, those of AMP were increased slightly by nerve stimulation. 3. Nerve stimulation enhanced the levels of the effectors fructose 2,6-bisphosphate and cyclic AMP only slightly to 140% and 125%, respectively; glucagon lowered the level of fructose 2,6-bisphosphate to 15% and increased the level of cyclic AMP to 300%. 4. In calcium-free perfusions the metabolic responses to nerve stimulation showed normal kinetics, if calcium was re-added 3 min before, but delayed kinetics, if it was re-added 2 min after the onset of the stimulus. The delay may be due to the time required to refill intracellular calcium stores. The hemodynamic alterations dependent on extracellular calcium were normal in both cases. The activation of glycogen phosphorylase, the inhibition of glycogen synthase and the increase of glucose 6-phosphate can well explain the enhancement of glucose output following nerve stimulation. The unaltered activity of pyruvate kinase and the marginal increase of fructose 2,6-bisphosphate cannot be the cause of the nerve-stimulation-dependent shift from lactate uptake to output. The very slight increase of the level of cyclic AMP after nerve stimulation cannot elicit the observed activation of glycogen phosphorylase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
4.
5.
Simon et al. (J. Clin. Invest., 70 (1982) 401) studied cholate binding to crude liver plasma membrane vesicles and suggested that the binding may represent mainly the binding to the receptor (carrier) on the canalicular membrane. This hypothesis was supported by finding a good correlation between the number of cholate binding sites on liver plasma membrane and the maximal rate of biliary secretion (Tm) for taurocholate. We studied bile acid binding to sinusoidal and canalicular membrane vesicles isolated from rat liver by a rapid filtration technique. Scatchard analysis of the saturation kinetics showed both [3H]cholate and [3H]chenodeoxycholate bind to two classes of binding site on each membrane. However, little difference was observed between the binding to sinusoidal and canalicular membrane vesicles for each bile acid (cholate, Kd1 = 10.4 and 19.8 microM, n1 = 31.0 23.6 pmol/mg protein, Kd2 = 1.32 and 1.73 mM, n2 = 13.1 and 23.4 nmol/mg protein; and chenodeoxycholate, Kd1 = 0.207 and 0.328 microM, n1 = 36.7 and 27.4 pmol/mg protein, Kd2 = 1.16 and 2.26 mM, and n2 = 20.6 and 24.2 nmol/mg protein; numbers show the mean values sinusoidal and canalicular membrane vesicles, respectively). Chenodeoxycholate binding to sinusoidal membrane vesicles was markedly inhibited by cholate but not by Rose bengal, an organic anion dye. These studies indicate that both membranes (sinusoidal and canalicular membrane vesicles) have two kinds of binding site for bile acids, although no clear difference in the binding properties was observed between the two membranes. Consequently, the cholate binding Simon detected may represent the binding not only to canalicular membrane vesicles but also to sinusoidal membrane vesicles.  相似文献   

6.
EGTA (ethanedioxybis(ethylamine)tetra-acetic acid) induced a release of Ca2+ from mitochondria isolated from both rat liver and rat heart that was inhibited by Ruthenium Red. The concentration of Ruthenium Red giving half-maximal inhibition was about 350 pmol/mg of protein, a value approximately 7 times greater than that giving half-maximal inhibition of the initial rate of Ca2+ transport. The EGTA-induced release of Ca2+ was temperature-dependent and was inhibited by the local anaesthetic, nupercaine.Pi, acetate, and tributyltin in the presence of Cl?, inhibited the Ruthenium Red-sensitive Ca2+ release induced by EGTA, whereas these agents enhanced the Ruthenium Red-insensitive release of Ca2+ induced by acetoacetate in liver and heart mitochondria and by Na+ in heart mitochondria.  相似文献   

7.
8.
Rat livers were perfused in a non-recirculating mode at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate, and 0.2 mM pyruvate. [3H]LTC4 was infused for a period of 5 min to a final concentration of 20 nM; it increased glucose and lactate output and reduced perfusion flow. 1) Leukotriene radioactivity was recovered 10 min after the onset of [3H]LTC4 infusion to about 40% in the effluent, to 20% in the bile, and to 40% in the liver. 2) Radioactivity in the effluent increased to a maximum 4-5 min after the onset and decreased again to essentially zero 3 min after completion of [3H]LTC4 infusion. [3H]LTC4 and [3H]LTD4 were the major labeled components in the effluent accounting for 45% and 38%, respectively, of the effluent radioactivity. 3) [3H]LTC4 and [3H]LTD4 were also the major components in bile; they accounted for 50% and 30%, respectively, of the radioactivity excreted, while more polar [3H]leukotriene metabolites accounted for the remainder. 4) In the liver, [3H]LTC4 and [3H]LTD4 were the major and [3H]LTE4, N-acetyl-[3H]LTE4 as well as omega-hydroxy-N-acetyl-[3H]LTE4 and omega-carboxy-N-acetyl-[3H]LTE4 were minor components detected 5 min after completion of [3H]LTC4 infusion. It is concluded from the present findings that during a 5 min infusion period about one third each of the infused LTC4 remained unchanged, was converted to LTD4, and was further degraded to LTE4 and polar metabolites including omega-oxidation products of N-acetyl-LTE4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A method is described for preparing isolated rat submandibular acini by collagenase digestion followed by mechanical dispersion. As assessed by Trypan Blue exclusion, phase contrast microscopy, ATP content and release of mucins and lactate dehydrogenase, the acini are morphologically and functionally intact. Secretory function of isolated acini was similar to that of intact tissue in terms of time-course, dose dependence and degree of stimulation of mucin release by adrenergic secretagogues. Mucin release was increased to the same extent (approx. 3-4-fold) by either isoproterenol or noradrenaline at a maximally effective concentration (10 microM). Stimulation of mucin release by isoproterenol (10 microM), noradrenaline (10 microM) or adrenaline (10 microM) was inhibited by propranolol (30 microM) but not by phentolamine (30 microM). Isoproterenol (10 microM) increased both 45Ca2+ uptake and efflux from the acini, which was shown to represent a net release of calcium. However, there was a delay (approx. 10 min) in onset of stimulation of 45Ca2+ mobilization which was not apparent in isoproterenol stimulation of mucin release. Our results indicate that increases in intracellular calcium mobilization in response to a beta-adrenergic secretagogue do not trigger mucin secretion from rat submandibular acini.  相似文献   

10.
11.
Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein activates both the sympathetic and parasympathetic liver nerves; the sympathetic effects clearly predominate. Parasympathetic effects were therefore studied in the rat liver perfused in situ by perivascular nerve stimulation in the presence of both an alpha- and a beta-blocker. In the presence of the alpha-blocker phentolamine and the beta-blocker propranolol all sympathetic nerve effects were prevented; the remaining parasympathetic stimulation had no influence on the basal glucose and lactate metabolism nor on the hemodynamics. Insulin alone, with both alpha- and beta-blockade, provoked a small, parasympathetic nerve stimulation in the presence of insulin a more pronounced enhancement of glucose utilization. In the presence of an alpha- and beta-blocker perivascular nerve stimulation antagonized the glucagon stimulated glucose release, but did not affect lactate exchange. The nerve effect was abolished by the parasympathetic antagonist atropine. Acetylcholine or insulin, with both an alpha- and beta-blocker present, mimicked the effects of nerve stimulation antagonizing the glucagon-stimulated glucose release. Nerve stimulation in the presence of insulin was more effective than either stimulus alone. The present results show that in rat liver stimulation of the parasympathetic hepatic nerves has direct effects on glucose metabolism synergistic with insulin and antagonistic to glucagon.  相似文献   

12.
Glucagon stimulates flux through the glycine cleavage system (GCS) in isolated rat hepatocytes (Jois, M., Hall, B., Fewer, K., and Brosnan, J. T. (1989) J. Biol. Chem. 264, 3347-3351. In the present study, flux through GCS was measured in isolated rat liver perfused with 100 nM glucagon, 1 microM epinephrine, 1 microM norepinephrine, 10 microM phenylephrine, or 100 nM vasopressin. These hormones increased flux through GCS in perfused rat liver by 100-200% above the basal rate. The possibility that the stimulation of flux by adrenergic agonists and vasopressin is mediated by increases in cytoplasmic Ca2+ which in turn could regulate mitochondrial glycine catabolism was examined by measuring flux through GCS in isolated mitochondria in the presence of 0.04-2.88 microM free Ca2+. Flux through GCS in isolated mitochondria was exquisitely sensitive to free Ca2+ in the medium; half-maximal stimulation occurred at about 0.4 microM free Ca2+ and maximal stimulation (7-fold) was reached when the free Ca2+ in the medium was 1 microM. The Vmax (nanomoles/mg protein/min) and Km (millimolar) values for the flux through GCS in intact mitochondria were 0.67 +/- 0.16 and 20.66 +/- 4.82 in the presence of 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and 3.28 +/- 0.76 and 10.98 +/- 1.91 in presence of 0.5 microM free Ca2+, respectively. The results show that the flux through GCS is sensitive to concentrations of calcium which would be achieved in the cytoplasm of hepatocytes stimulated by calcium-mobilizing hormones.  相似文献   

13.
14.
By continuous perfusion of columns containing isolated immobilized rat liver nuclei with media containing labeled RNA precursors, the in vitro synthesis and release of RNA was studied. The combined reaction of synthesis and release could be adjusted to proceed at a constant rate. The reaction rate responded to variation of termperature, ionic conditions, nucleoside triphosphate concentration and to the addition of RNA polymerase inhibitors. During 60 min perfusion approximately equal amounts of radioactive low molecular weight RNA and of ribonucleoproteins were released. Pulse-chase experiments showed that the low molecular weight RNA was synthesized throughout the perfusion and released immediately after formation. The ribonucleoproteins were primarly labeled during the first period of perfusion and were gradually released. Synthesis of RNA contained in the ribonucleoproteins was inhibited by low alpha-amanitin concentrations, indicating that it was catalyzed by RNA polymerase II. The in vitro labeled ribonucleoproteins exhibited properties of the stable nuclear particles which can be extracted from isolated nuclei after rapid in vivo labeling of RNA. They had a buoyant density of 1.41--1.43 in CsCl, were partially unstable in 1% deoxycholate, but stable in 0.1% deoxycholate, in 100 mM NaCl and in 10 mM EDTA. Due to the dilution by the perfusion medium, the ribonucleoproteins sedimented with a peak at 22--27 S, and not at 30--45 S. The RNA synthesized in the immobilized nuclei was not degraded during the perfusion. Less than 20% was gradually released, whereby the 20--30 S peak zone was reduced. While the properties of the in vitro labeled ribonucleoproteins and of rapidly in vivo labeled ribonucleoproteins were the same, the kinetics of their release differed.  相似文献   

15.
Release of lactate was studied during in vitro incubations with isolated fat cells. Lactate release increased (approximately 3-fold) with increasing medium glucose concentration (from 3 to 12 mM) in both large and small fat cells. Large fat cells from older, fatter rats, however, released 3-4 times more lactate per cell than small fat cells from young rats when incubated with 3, 6 or 12 mM glucose. Insulin and epinephrine produced a marked stimulation of lactate release in small fat cells, but these hormones had no effect in large fat cells. Lactate accounted for only 10-15% of the glucose metabolized by small fat cells under all incubation conditions but was nearly 40% of glucose utilized by large fat cells at glucose concentrations greater than 6 mM. In conclusion, lactate is a major metabolite of glucose in adipocytes, particularly in the large fat cells. Adipose tissue may therefore be a major site of lactate production, particularly in states of altered glucose metabolism (i.e., hyperglycemia) and obesity.  相似文献   

16.
Ruthenium red prevented the spontaneous calcium release and the accompanying mitochondrial destruction occurring in calcium-loaded mitochondria in the presence of phosphate. Under these conditions delta pH and membrane potential delta psi were preserved and the ruthenium red-induced calcium efflux was low and at a constant rate. On prolonged incubation with calcium prior to addition of ruthenium red increasingly more mitochondrial calcium developed into a pool rapidly dischargeable by ruthenium red. This development was accompanied by stimulation of respiration which was, however, not abolished by ruthenium red as could have been expected if it had been caused by calcium cycling. Calcium therefore altered mitochondria by a different mechanism than by cycling across the inner membrane.  相似文献   

17.
18.
The changes in intracellular Ca2+ concentration [( Ca2+]i) of hepatocytes induced by certain bile acids are biphasic: an initial increase is followed by a more gradual decrease. This latter decline in [Ca2+]i may be due to an efflux of Ca2+ across the plasma membrane. This hypothesis was tested by studying the effect of different bile acids on the efflux of 45Ca from preloaded rat hepatocytes and isolated perfused rat livers. The following bile acids were studied: cholic (C), ursodeoxycholic (UDC), chenodeoxycholic (CDC), and deoxycholic (DC) acids; their taurine (T) conjugates (TC, TUDC, TCDC, and TDC); and the taurine, sulfate (S), and glucuronide (Glu) derivatives of lithocholic acid (TLC, LS, TLS, and LGlu, respectively). At 0.3 mM, all bile acids except C, TC, TCDC, UDC, and TUDC significantly increased 45Ca efflux from preloaded hepatocytes without affecting cell viability. Dose-response studies revealed that the minimum effective concentration needed to induce 45Ca efflux was 0.06 mM for LS, 0.8 mM for TCDC, and 10 mM for TC. Efflux of 86Rb from preloaded hepatocytes was not significantly altered by 0.1 mM LS, indicating relative specificity for calcium. TDC and DC, but not TC, increased 45Ca efflux from preloaded perfused rat livers. These results showed that bile acids known to increase [Ca2+]i (CDC, DC, TDC, and TLC) also increased 45Ca efflux from hepatocytes and perfused livers and that efflux was also stimulated by LS, TLS, and LGlu. The extent of this efflux was related to the hydrophobicity of the steroid nucleus of the bile acid. It is speculated that bile acid-induced increases in [Ca2+]i activate the plasma membrane Ca2+ pump resulting in increased Ca2+ efflux.  相似文献   

19.
20.
The aim of the present study was to investigate the actions of zymosan on glucose release and fatty acid oxidation in perfused rat livers and to determine if Kupffer cells and Ca2+ ions are implicated in these actions. Zymosan caused stimulation of glycogenolysis in livers from fed rats. In livers from fasted rats zymosan caused gradual inhibition of glucose production and oxygen consumption from lactate plus pyruvate. Ketogenesis, oxygen consumption, and [14C-]-CO2 production were inhibited by zymosan when the [1-14C]-palmitate was supplied exogenously. However, ketogenesis and oxygen consumption from endogenous sources were not inhibited. An interference with substrate-uptake by the liver may be the cause of the changes in gluconeogenesis and oxidation of fatty acids from exogenous sources. The pretreatment of the rats with gadolinium chloride and the removal of Ca2+ ions did not suppress the effects of zymosan on glucose release, a finding that argues against the participation of Kupffer cells or Ca2+ ions in the liver responses. The hepatic metabolic changes caused by zymosan could play a role in the systemic metabolic alterations reported to occur after in vivo zymosan administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号