首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MTA1 (metastasis-associated protein 1), an integral component of the nucleosome remodeling and deacetylase complex, has recently been implicated in the ionizing radiation-induced DNA damage response. However, whether MTA1 also participates in the UV-induced DNA damage checkpoint pathway remains unknown. In response to UV radiation, ATR (ataxia teleangiectasia- and Rad3-related) is the major kinase activated that orchestrates cell cycle progression with DNA repair machinery by phosphorylating and activating a number of downstream substrates, such as Chk1 (checkpoint kinase 1) and H2AX (histone 2A variant X). Here, we report that UV radiation stabilizes MTA1 in an ATR-dependent manner and increases MTA1 binding to ATR. On the other hand, depletion of MTA1 compromises the ATR-mediated Chk1 activation following UV treatment, accompanied by a marked down-regulation of Chk1 and its interacting partner Claspin, an adaptor protein that is required for the phosphorylation and activation of Chk1 by ATR. Furthermore, MTA1 deficiency decreases the induction of phosphorylated H2AX (referred to as γ-H2AX) and γ-H2AX focus formation after UV treatment. Consequently, depletion of MTA1 results in a defect in the G2-M checkpoint and increases cellular sensitivity to UV-induced DNA damage. Thus, MTA1 is required for the activation of the ATR-Claspin-Chk1 and ATR-H2AX pathways following UV treatment, and the noted abrogation of the DNA damage checkpoint in the MTA1-depleted cells may be, at least in part, a consequence of dysregulation of the expression of these two pathways. These findings suggest that, in addition to its role in the repair of double strand breaks caused by ionizing radiation, MTA1 also participates in the UV-induced ATR-mediated DNA damage checkpoint pathway.  相似文献   

2.
Cells respond to ionizing radiation (IR)–induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin–remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs.  相似文献   

3.
Metastasis-associated protein 3 (MTA3) is a constituent of the Mi-2/nucleosome remodeling and deacetylase (NuRD) protein complex that regulates gene expression by altering chromatin structure and can facilitate cohesin loading onto DNA. The biological function of MTA3 within the NuRD complex is unknown. Herein, we show that MTA3 was expressed highly in granulosa cell nuclei of all ovarian follicle stages and at lower levels in corpora lutea. We tested the hypothesis that MTA3-NuRD complex function is required for granulosa cell proliferation. In the ovary, MTA3 interacted with NuRD proteins CHD4 and HDAC1 and the core cohesin complex protein RAD21. In cultured mouse primary granulosa cells, depletion of endogenous MTA3 using RNA interference slowed cell proliferation; this effect was rescued by coexpression of exogenous MTA3. Slowing of cell proliferation correlated with a significant decrease in cyclin B1 and cyclin B2 expression. Granulosa cell populations lacking MTA3 contained a significantly higher percentage of cells in G2/M phase and a lower percentage in S phase compared with control cells. Furthermore, MTA3 depletion slowed entry into M phase as indicated by reduced phosphorylation of histone H3 at serine 10. These findings provide the first evidence to date that MTA3 interacts with NuRD and cohesin complex proteins in the ovary in vivo and regulates G2/M progression in proliferating granulosa cells.  相似文献   

4.
Histone deacetylation plays a pivotal role in regulating human cytomegalovirus gene expression. In this report, we have identified candidate HDAC1-interacting proteins in the context of infection by using a method for rapid immunoisolation of an epitope-tagged protein coupled with mass spectrometry. Putative interactors included multiple human cytomegalovirus-coded proteins. In particular, the interaction of pUL38 and pUL29/28 with HDAC1 was confirmed by reciprocal immunoprecipitations. HDAC1 is present in numerous protein complexes, including the HDAC1-containing nucleosome remodeling and deacetylase protein complex, NuRD. pUL38 and pUL29/28 associated with the MTA2 component of NuRD, and shRNA-mediated knockdown of the RBBP4 and CHD4 constituents of NuRD inhibited HCMV immediate-early RNA and viral DNA accumulation; together this argues that multiple components of the NuRD complex are needed for efficient HCMV replication. Consistent with a positive acting role for the NuRD elements during viral replication, the growth of pUL29/28- or pUL38-deficient viruses could not be rescued by treating infected cells with the deacetylase inhibitor, trichostatin A. Transient expression of pUL29/28 enhanced activity of the HCMV major immediate-early promoter in a reporter assay, regardless of pUL38 expression. Importantly, induction of the major immediate-early reporter activity by pUL29/28 required functional NuRD components, consistent with the inhibition of immediate-early RNA accumulation within infected cells after knockdown of RBBP4 and CHD4. We propose that pUL29/28 modifies the NuRD complex to stimulate the accumulation of immediate-early RNAs.  相似文献   

5.
6.
7.
8.
9.
10.
Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.  相似文献   

11.
Adenovirus (Ad) mutants that lack early region 4 (E4) are unable to produce the early regulatory proteins that normally inactivate the Mre11/Rad50/Nbs1 (MRN) sensor complex, which is a critical component for the ability of cells to respond to DNA damage. E4 mutant infection therefore activates a DNA damage response, which in turn interferes with a productive viral infection. MRN complex proteins localize to viral DNA replication centers in E4 mutant-infected cells, and this complex is critical for activating the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), which phosphorylate numerous substrates important for DNA repair, cell cycle checkpoint activation, and apoptosis. E4 mutant growth defects are substantially rescued in cells lacking an intact MRN complex. We have assessed the role of the downstream ATM and ATR kinases in several MRN-dependent E4 mutant phenotypes. We did not identify a role for either ATM or ATR in “repair” of E4 mutant genomes to form concatemers. ATR was also not observed to contribute to E4 mutant defects in late protein production. In contrast, the kinase activity of ATM was important for preventing efficient E4 mutant DNA replication and late gene expression. Our results suggest that the MRN complex interferes with E4 mutant DNA replication at least in part through its ability to activate ATM.  相似文献   

12.
13.
染色质作为真核细胞遗传信息,体内外各种因素的作用致使不断的产生损伤,但是细胞仍能保持正常的生长、分裂和繁殖,这与基因组稳定性和完整性保持,并且通过自身的损伤修复有着密切的联系。ATP依赖的染色质重塑是染色质重塑的最重要的方式之一,主要是利用ATP水解释放的能量,将凝聚的异染色质打开,协调损伤修复蛋白与DNA损伤位点的作用,通过对组蛋白的共价键修饰或ATP依赖的染色质重塑复合物开启了DNA的损伤修复的大门。CHD4/Mi-2β的类SWI2/SNF2 ATP酶/解螺旋酶域结构域保守性最强,这一结构域存在与多种依赖于ATP的核小体重构复合物。Mi-2蛋白复合物称为核小体重塑及去乙酰化酶NuRd(nucleoside remodeling and deacetylase,NuRD),是个多亚基蛋白复合物,Mi2β/CHD4是该复合物的核心成员。近来的研究发现,CHD4具有染色质重塑功能,并且参与DNA损伤修复的调控。CHD4羧基端的PHD通过乙酰化或甲基化识别组蛋白H3氨基端Lys9(H3K9ac和H3K9me),并且通过Lys4甲基化(H3K4me)或Ala1乙酰化(H3A Lac)抑制与H3、H4的结合,为染色质重塑提供了保障。Mi-2β/CHD4参与DNA损伤反应,定位于DNA损伤γ-H2AX的foci。沉默Mi-2β/CHD4基因,细胞自发性DNA损伤增多和辐射敏感性增强。表明CHD4在染色质重塑中具有重要的作用。  相似文献   

14.
The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.  相似文献   

15.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), coordinate the cellular response to DNA damage. In budding yeast, ATR homologue Mec1 plays a central role in DNA damage signaling. Mec1 interacts physically with Ddc2 and functions in the form of the Mec1-Ddc2 complex. To identify proteins interacting with the Mec1-Ddc2 complex, we performed a modified two-hybrid screen and isolated RFA1 and RFA2, genes that encode subunits of replication protein A (RPA). Using the two-hybrid system, we found that the extreme C-terminal region of Mec1 is critical for RPA binding. The C-terminal substitution mutation does not affect the Mec1-Ddc2 complex formation, but it does impair the interaction of Mec1 and Ddc2 with RPA as well as their association with DNA lesions. The C-terminal mutation also decreases Mec1 kinase activity. However, the Mec1 kinase-defect by itself does not perturb Mec1 association with sites of DNA damage. We also found that Mec1 and Ddc2 associate with sites of DNA damage in an interdependent manner. Our findings support the model in which Mec1 and Ddc2 localize to sites of DNA damage by interacting with RPA in the form of the Mec1-Ddc2 complex.  相似文献   

16.
17.
DNA damage is a universal inducer of cell cycle arrest at the G2 phase. Infection by the human immunodeficiency virus type 1 (HIV-1) also blocks cellular proliferation at the G2 phase. The HIV-1 accessory gene vpr encodes a conserved 96-amino acid protein (Vpr) that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. In the present study, we examined a recently identified DNA damage-signaling protein, the ATM- and Rad3-related protein, ATR, for its potential role in the induction of G2 arrest by Vpr. We show that inhibition of ATR by pharmacological inhibitors, by expression of the dominant-negative form of ATR, or by RNA interference inhibits Vpr-induced cell cycle arrest. As with DNA damage, activation of ATR by Vpr results in phosphorylation of Chk1. This study provides conclusive evidence of activation of the ATR-initiated DNA damage-signaling pathway by a viral gene product. These observations are important toward understanding how HIV infection promotes cell cycle disruption, cell death, and ultimately, CD4+ lymphocyte depletion.  相似文献   

18.
19.
20.
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号