首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system can be phosphorylated by PEP on an active-site histidine residue, localized to a cleft between an alpha-helical domain and an alpha/beta domain on the amino terminal half of the protein. The phosphoryl group on the active-site histidine can be passed to an active-site histidine residue of HPr. It has been proposed that the major interaction between enzyme I and HPr occurs via the alpha-helical domain of enzyme I. The isolated recombinant alpha-helical domain (residues 25-145) with approximately 80% alpha-helices as well as enzyme I deficient in that domain [EI(DeltaHD)] with approximately 50% alpha-helix content from M. capricolum were used to further elucidate the nature of the enzyme I-HPr complex. Isothermal titration calorimetry demonstrated that HPr binds to the alpha-helical domain and intact enzyme I with = 5 x 10(4) and 1.4 x 10(5) M(-)(1) at pH 7.5 and 25 degrees C, respectively, but not to EI(DeltaHD), which contains the active-site histidine of enzyme I and can be autophosphorylated by PEP. In vitro reconstitution experiments with proteins from both M. capricolum and E. coli showed that EI(DeltaHD) can donate its bound phosphoryl group to HPr in the presence of the isolated alpha-helical domain. Furthermore, M. capricolum recombinant C-terminal domain of enzyme I (EIC) was shown to reconstitute phosphotransfer activity with recombinant N-terminal domain (EIN) approximately 5% as efficiently as the HD-EI(DeltaHD) pair. Recombinant EIC strongly self-associates ( approximately 10(10) M(-)(1)) in comparison to dimerization constants of 10(5)-10(7) M(-)(1) measured for EI and EI(DeltaHD).  相似文献   

2.
HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS) controls sugar uptake and carbon utilization in low-GC Gram-positive bacteria and in Gram-negative bacteria. We have purified HPr from Streptomyces coelicolor cell extracts. The N-terminal sequence matched the product of an S. coelicolor orf, designated ptsH, sequenced as part of the S. coelicolor genome sequencing project. The ptsH gene appears to form a monocistronic operon. Determination of the evolutionary relationship revealed that S. coelicolor HPr is equally distant to all known HPr and HPr-like proteins. The presumptive phosphorylation site around histidine 15 is perfectly conserved while a second possible phosphorylation site at serine 47 is not well-conserved. HPr was overproduced in Escherichia coli in its native form and as a histidine-tagged fusion protein. Histidine-tagged HPr was purified to homogeneity. HPr was phosphorylated by its own enzyme I (EI) and heterologously phosphorylated by EI of Bacillus subtilis and Staphylococcus aureus, respectively. This phosphoenolpyruvate-dependent phosphorylation was absent in an HPr mutant in which histidine 15 was replaced by alanine. Reconstitution of the fructose-specific PTS demonstrated that HPr could efficiently phosphorylate enzyme IIFructose. HPr-P could also phosphorylate enzyme IIGlucose of B. subtilis, enzyme IILactose of S. aureus, and IIAMannitol of E. coli. ATP-dependent phosphorylation was detected with HPr kinase/phosphatase of B. subtilis. These results present the first identification of a gene of the PTS complement of S. coelicolor, providing the basis to elucidate the role(s) of HPr and the PTS in this class of bacteria.  相似文献   

3.
The structural and thermodynamic impact of phosphorylation on the interaction of the N-terminal domain of enzyme I (EIN) and the histidine phosphocarrier protein (HPr), the two common components of all branches of the bacterial phosphotransferase system, have been examined using NMR spectroscopy and isothermal titration calorimetry. His-189 is located at the interface of the alpha and alphabeta domains of EIN, resulting in rather widespread chemical shift perturbation upon phosphorylation, in contrast to the highly localized perturbations seen for HPr, where His-15 is fully exposed to solvent. Residual dipolar coupling measurements, however, demonstrate unambiguously that no significant changes in backbone conformation of either protein occur upon phosphorylation: for EIN, the relative orientation of the alpha and alphabeta domains remains unchanged; for HPr, the backbone /Psi torsion angles of the active site residues are unperturbed within experimental error. His --> Glu/Asp mutations of the active site histidines designed to mimic the phosphorylated states reveal binding equilibria that favor phosphoryl transfer from EIN to HPr. Although binding of phospho-EIN to phospho-HPr is reduced by a factor of approximately 21 relative to the unphosphorylated complex, residual dipolar coupling measurements reveal that the structures of the unphosphorylated and biphosphorylated complexes are the same. Hence, the phosphorylation states of EIN and HPr shift the binding equilibria predominantly by modulating intermolecular electrostatic interactions without altering either the backbone scaffold or binding interface. This facilitates highly efficient phosphoryl transfer between EIN and HPr, which is estimated to occur at a rate of approximately 850 s(-1) from exchange spectroscopy.  相似文献   

4.
Mutational Analysis of the Role of HPr in Listeria monocytogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

5.
The amino terminal domain of enzyme I (residues 1-258 + Arg; EIN) and full length enzyme I (575 residues; EI) harboring active-site mutations (H189E, expected to have properties of phosphorylated forms, and H189A) have been produced by protein bioengineering. Differential scanning calorimetry (DSC) and temperature-induced changes in ellipticity at 222 nm for monomeric wild-type and mutant EIN proteins indicate two-state unfolding. For EIN proteins in 10 mM K-phosphate (and 100 mM KCl) at pH 7.5, deltaH approximately 140 +/- 10 (160) kcal mol(-1) and deltaCp approximately 2.7 (3.3) kcal K(-1) mol(-1). Transition temperatures (Tm) are 57 (59), 55 (58), and 53 (56) degrees C for wild-type, H189A, and H189E forms of EIN, respectively. The order of conformational stability for dephospho-His189, phospho-His189, and H189 substitutions of EIN at pH 7.5 is: His > Ala > Glu > His-PO3(2-) due to differences in conformational entropy. Although H189E mutants have decreased Tm values for overall unfolding the amino terminal domain, a small segment of structure (3 to 12%) is stabilized (Tm approximately 66-68 degrees C). This possibly arises from an ion pair interaction between the gamma-carboxyl of Glu189 and the epsilon-amino group of Lys69 in the docking region for the histidine-containing phosphocarrier protein HPr. However, the binding of HPr to wild-type and active-site mutants of EIN and EI is temperature-independent (entropically controlled) with about the same affinity constant at pH 7.5: K(A)' = 3 +/- 1 x 10(5) M(-1) for EIN and approximately 1.2 x 10(5) M(-1) for EI.  相似文献   

6.
The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.  相似文献   

7.
BackgroundThe phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes.MethodsWe obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR).ResultsSecondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules.ConclusionsAlthough HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity.General significanceHPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.  相似文献   

8.
The HPrK kinase/phosphatase is a common component of the phosphotransferase system (PTS) of gram-positive bacteria and regulates catabolite repression through phosphorylation/dephosphorylation of its substrate, the PTS protein HPr, at a conserved serine residue. Phosphorylation of HPr by HPrK also affects additional phosphorylation of HPr by the PTS enzyme EI at a conserved histidine residue. Sinorhizobium meliloti can live as symbionts inside legume root nodules or as free-living organisms and is one of the relatively rare gram-negative bacteria known to have a gene encoding HPrK. We have constructed S. meliloti mutants that lack HPrK or that lack key amino acids in HPr that are likely phosphorylated by HPrK and EI. Deletion of hprK in S. meliloti enhanced catabolite repression caused by succinate, as did an S53A substitution in HPr. Introduction of an H22A substitution into HPr alleviated the strong catabolite repression phenotypes of strains carrying ΔhprK or hpr(S53A) mutations, demonstrating that HPr-His22-P is needed for strong catabolite repression. Furthermore, strains with a hpr(H22A) allele exhibited relaxed catabolite repression. These results suggest that HPrK phosphorylates HPr at the serine-53 residue, that HPr-Ser53-P inhibits phosphorylation at the histidine-22 residue, and that HPr-His22-P enhances catabolite repression in the presence of succinate. Additional experiments show that ΔhprK mutants overproduce exopolysaccharides and form nodules that do not fix nitrogen.  相似文献   

9.
HPr is a protein of the bacterial phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). In Gram-positive bacteria, HPr can be phosphorylated on Ser(46) by HPr(Ser) kinase/phosphorylase (HPrK/P) and on His(15) by enzyme I (EI) of the PTS. In vitro studies have shown that phosphorylation on one residue greatly inhibits the second phosphorylation. However, streptococci contain significant amounts of HPr(Ser-P)(His approximately P) during exponential growth, and recent studies suggest that phosphorylation of HPr(Ser-P) by EI is involved in the recycling of HPr(Ser-P)(His approximately P). We report in this paper a study on the phosphorylation of Streptococcus salivarius HPr, HPr(Ser-P), and HPr(S46D) by EI. Our results indicate that (i) the specificity constant (k(cat)/K(m)) of EI for HPr(Ser-P) at pH 7.9 was approximately 5000-fold smaller than that observed for HPr, (ii) no metabolic intermediates were able to stimulate HPr(Ser-P) phosphorylation, (iii) the rate of HPr phosphorylation decreased at pHs below 6.5, while that of HPr(Ser-P) increased and was almost 10-fold higher at pH 6.1 than at pH 7.9, (iv) HPr(S46D), a mutated HPr alleged to mimic HPr(Ser-P), was also phosphorylated more efficiently under acidic conditions, and, lastly, (v) phosphorylation of Bacillus subtilis HPr(Ser-P) by B. subtilis EI was also stimulated at acidic pH. Our results suggest that the high levels of HPr(Ser-P)(His approximately P) in streptococci result from the combination of two factors, a high physiological concentration of HPr(Ser-P) and stimulation of HPr(Ser-P) phosphorylation by EI at acidic pH, an intracellular condition that occurs in response to the acidification of the external medium during growth of the culture.  相似文献   

10.
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.  相似文献   

11.
The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis, a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtilis cannot efficiently phosphorylate the EIIs of E. coli. In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr protein. Random mutations were introduced into B. subtilis HPr, and a screen for improved growth on PTS sugars yielded amino acid changes in positions 12, 16, 17, 20, 24, 27, 47, and 51, located in the interaction surface of HPr. Most of the changes restore intermolecular hydrophobic interactions and salt bridges normally formed by the corresponding residues in E. coli HPr. The residues present at the targeted positions differ between HPrs of gram-positive and -negative bacteria, but within each group they are highly conserved. Therefore, they may constitute a signature motif that determines the specificity of HPr for either gram-negative or -positive EIIs.  相似文献   

12.
The histidine-containing phosphocarrier protein HPr is a central component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), which transfers metabolic carbohydrates across the cell membrane in many bacterial species. In Gram-positive bacteria, phosphorylation of HPr at conserved serine 46 (P-Ser-HPr) plays several regulatory roles within the cell; the major regulatory effect of P-Ser-HPr is its inability to act as a phosphocarrier substrate in the enzyme I reaction of the PTS. In order to investigate the structural nature of HPr regulation by phosphorylation at Ser46, the structure of the P-Ser-HPr from the Gram- positive bacterium Enterococcus faecalis has been determined. X-ray diffraction analysis of P-Ser-HPr crystals provided 10,043 unique reflections, with a 95.1 % completeness of data to 1.9 A resolution. The structure was solved using molecular replacement, with two P-Ser-HPr molecules present in the asymmetric unit. The final R-value and R(Free) are 0.178 and 0.239, respectively. The overall tertiary structure of P-Ser-HPr is that of other HPr structures. However the active site in both P-Ser-HPr molecules was found to be in the "open" conformation. Ala16 of both molecules were observed to be in a state of torsional strain, similar to that seen in the structure of the native HPr from E. faecalis. Regulatory phosphorylation at Ser46 does not induce large structural changes to the HPr molecule. The B-helix was observed to be slightly lengthened as a result of Ser46 phosphorylation. Also, the water mediated Met51-His15 interaction is maintained, again similar to that of the native E. faecalis HPr. The major structural, and thus regulatory, effect of phosphorylation at Ser46 is disruption of the hydrophobic interactions between EI and HPr, in particular the electrostatic repulsion between the phosphoryl group on Ser46 and Glu84 of EI and the prevention of a potential interaction of Met48 with a hydrophobic pocket of EI.  相似文献   

13.
In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component of the PTS. However, determination of the cellular levels of the different forms of HPr, namely, HPr, HPr(His~P), HPr(Ser-P), and HPr(Ser-P)(His~P), in exponentially lactose-growing cells revealed that the doubly phosphorylated form of HPr represented 75% and 25% of the total HPr in S. thermophilus ATCC 19258 and S. thermophilus SMQ-301, respectively. Experiments conducted with [32P]PEP and purified recombinant S. thermophilus ATCC 19258 proteins (EI, HPr, and IIALacS) showed that IIALacS was reversibly phosphorylated by HPr(Ser-P)(His~P) at a rate similar to that measured with HPr(His~P). Sequence analysis of the IIALacS protein domains from several S. thermophilus strains indicated that they can be divided into two groups on the basis of their amino acid sequences. The amino acid sequence of IIALacS from group I, to which strain 19258 belongs, differed from that of group II at 11 to 12 positions. To ascertain whether IIALacS from group II could also be phosphorylated by HPr(His~P) and HPr(Ser-P)(His~P), in vitro phosphorylation experiments were conducted with purified proteins from Streptococcus salivarius ATCC 25975, which possesses a IIALacS very similar to group II S. thermophilus IIALacS. The results indicated that S. salivarius IIALacS was phosphorylated by HPr(Ser-P)(His~P) at a higher rate than that observed with HPr(His~P). Our results suggest that the reversible phosphorylation of IIALacS in S. thermophilus is accomplished by HPr(Ser-P)(His~P) as well as by HPr(His~P).  相似文献   

14.
The bacterial phosphoenolpyruvate (PEP) sugar phosphotransferase system mediates sugar uptake and controls the carbon metabolism in response to carbohydrate availability. Enzyme I (EI), the first component of the phosphotransferase system, consists of an N-terminal protein binding domain (EIN) and a C-terminal PEP binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here we report the 2.4 Å crystal structure of the homodimeric EI from Staphylococcus aureus. EIN consists of the helical hairpin HPr binding subdomain and the phosphorylatable βα phospho-histidine (P-His) domain. EIC folds into an (βα)8 barrel. The dimer interface of EIC buries 1833 Å2 of accessible surface per monomer and contains two Ca2+ binding sites per dimer. The structures of the S. aureus and Escherichia coli EI domains (Teplyakov, A., Lim, K., Zhu, P. P., Kapadia, G., Chen, C. C., Schwartz, J., Howard, A., Reddy, P. T., Peterkofsky, A., and Herzberg, O. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16218–16223) are very similar. The orientation of the domains relative to each other, however, is different. In the present structure the P-His domain is docked to the HPr binding domain in an orientation appropriate for in-line transfer of the phosphate to the active site histidine of the acceptor HPr. In the E. coli structure the phospho-His of the P-His domain projects into the PEP binding site of EIC. In the S. aureus structure the crystallographic temperature factors are lower for the HPr binding domain in contact with the P-His domain and higher for EIC. In the E. coli structure it is the reverse.  相似文献   

15.
In Gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system can be phosphorylated at two distinct sites, His-15 and Ser-46. While the former phosphorylation is implicated in phosphoryl transfer to the incoming sugars, the latter serves regulatory purposes. In Bacillus subtilis, the two phosphorylation events are mutually exclusive. In contrast, doubly phosphorylated HPr is present in cell extracts of Mycoplasma pneumoniae. In this work, we studied the ability of the two single phosphorylated HPr species to accept a second phosphoryl group. Indeed, both Enzyme I and the HPr kinase/phosphorylase from M. pneumoniae are able to use phosphorylated HPr as a substrate. The formation of doubly phosphorylated HPr is substantially slower as compared to the phosphorylation of free HPr. However, the rate of formation of doubly phosphorylated HPr is sufficient to account for the amount of HPr(His approximately P)(Ser-P) detected in M. pneumoniae cells.  相似文献   

16.
17.
Bacillus subtilis possesses carbon-flux regulating histidine protein (Crh), a paralog of the histidine protein (HPr) of the phosphotransferase system (PTS). Like HPr, Crh becomes (de)phosphorylated in vitro at residue Ser46 by the metabolite-controlled HPr kinase/phosphorylase HPrK/P. Depending on its phosphorylation state, Crh exerts regulatory functions in connection with carbohydrate metabolism. So far, knowledge on phosphorylation of Crh in vivo has been limited and derived from indirect evidence. Here, we studied the dynamics of Crh phosphorylation directly by non-denaturing gel electrophoresis followed by Western analysis. The results confirm that HPrK/P is the single kinase catalyzing phosphorylation of Crh in vivo. Accordingly, phosphorylation of Crh is triggered by the carbon source as observed previously for HPr, but with some differences. Phosphorylation of both proteins occurred during exponential growth and disappeared upon exhaustion of the carbon source. During exponential growth, ~80% of the Crh molecules were phosphorylated when cells utilized a preferred carbon source. The reverse distribution, i.e. around 20% of Crh molecules phosphorylated, was obtained upon utilization of less favorable substrates. This clear-cut classification of the substrates into two groups has not previously been observed for HPr(Ser)~P formation. The likely reason for this difference is the additional PTS-dependent phosphorylation of HPr at His15, which limits accumulation of HPr(Ser)~P.  相似文献   

18.
Among the few regulatory events in the minimal bacterium Mycoplasma pneumoniae is the phosphorylation of the HPr phosphocarrier protein of the phosphotransferase system. In the presence of glycerol, HPr is phosphorylated in an ATP-dependent manner by the HPr kinase/phosphorylase. The role of the latter enzyme was studied by constructing a M. pneumoniae hprK mutant defective in HPr kinase/phosphorylase. This mutant strain no longer exhibited HPr kinase activity but, surprisingly, still had phosphatase activity toward serine-phosphorylated HPr (HPr(Ser-P)). An inspection of the genome sequence revealed the presence of a gene (prpC) encoding a presumptive protein serine/threonine phosphatase of the PP2C family. The phosphatase PrpC was purified and its biochemical activity in HPr(Ser-P) dephosphorylation demonstrated. Moreover, a prpC mutant strain was isolated and found to be impaired in HPr(Ser-P) dephosphorylation. Homologues of PrpC are present in many bacteria possessing HPr(Ser-P), suggesting that PrpC may play an important role in adjusting the cellular HPr phosphorylation state and thus controlling the diverse regulatory functions exerted by the different forms of HPr.  相似文献   

19.
The bacterial PEP:sugar PTS consists of a cascade of several proteins involved in the uptake and phosphorylation of carbohydrates, and in signal transduction pathways. Its uniqueness in bacteria makes the PTS a target for new antibacterial drugs. These drugs can be obtained from peptides or protein fragments able to interfere with the first reaction of the protein cascade: the phosphorylation of the HPr by the first enzyme, the so-called enzyme EI. To that end, we designed a peptide, HPr9-30, spanning residues 9 to 30 of the intact HPr protein, containing the active site histidine (His-15) and the first α-helix of HPr of Streptomyces coelicolor, HPrsc. By using fluorescence and circular dichroism, we first determined qualitatively that HPrsc and HPr9-30 did bind to EIsc, the enzyme EI from S. coelicolor. Then, we determined quantitatively the binding affinities of HPr9-30 and HPrsc for EIsc by using ITC and STD-NMR. The STD-NMR experiments indicate that the epitope region of HPr9-30 was formed by residues Leu-14, His-15, Ile-21, and Val-23. The binding reaction between EIsc and HPrsc is enthalpy driven and in other species is entropy driven; further, the affinity of HPrsc for EIsc was smaller than in other species. However, the affinity of HPr9-30 for EIsc was only moderately lower than that of EIsc for HPrsc, suggesting that this peptide could be considered a promising hit compound for designing new inhibitors against the PTS.  相似文献   

20.
Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号