共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuroprotection of aucubin in primary diabetic encephalopathy 总被引:1,自引:0,他引:1
HongYu Xue LiJi Jin Lei Jin Peng Zhang DanQing Li YanQiu Xia YaNan Lu YongPing Xu 《中国科学C辑(英文版)》2008,51(6):495-502
Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy.
In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin, using rats (n=8). Diabetes mellitus was induced in the rats by intraperitoneal (i.p.) injection of streptozotocin (60 mg/kg body weight).
After 65 d, half of the DM rats were administered aucubin (5 mg/kg; i.p.) for 15 d, yielding treatment DM+A. A third group
of rats received no streptozotocin or aucibin, and served as controls (CON). Encephalopathy was assessed using Y-maze behavioral
testing. Rats were euthanized on Day 87, and hippocampi were excised for visual (light and transmission electron microscopic)
and immunochemical (Western blot; immunohistochemical) assessments of the CA1 subfield for apoptosis and expression of regulatory
proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates,
pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of
neuronal cells) were identical: there were highly significant differences between DM and CON groups (P<0.001), but the effects were significantly moderated (P<0.01) in DM+A compared with DM. These findings confirm the association of apoptosis with the encephalopathic effects of diabetes
mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apoptotic cell death. All
of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes. 相似文献
2.
Neuroprotection of aucubin in primary diabetic encephalopathy 总被引:2,自引:0,他引:2
XUE HongYu JIN LiJi JIN Lei ZHANG Peng LI DanQing XIA YanQiu LU YaNan
& XU YongPing
《中国科学:生命科学英文版》2008,51(6):495-502
& XU YongPing
《中国科学:生命科学英文版》2008,51(6):495-502
Hippocampal neuronal apoptosis accompanied by impairment of cognitive function occurs in primary diabetic encephalopathy. In this study, we investigated the neuroprotective mechanism of the iridoid glycoside, aucubin, using rats (n=8). Diabetes mellitus was induced in the rats by intraperitoneal (i.p.) injection of streptozotocin (60 mg/kg body weight). After 65 d, half of the DM rats were administered aucubin (5 mg/kg; i.p.) for 15 d, yielding treatment DM A. A third group of rats received no strepto- zotocin or aucibin, and served as controls (CON). Encephalopathy was assessed using Y-maze be- havioral testing. Rats were euthanized on Day 87, and hippocampi were excised for visual (light and transmission electron microscopic) and immunochemical (Western blot; immunohistochemical) as- sessments of the CA1 subfield for apoptosis and expression of regulatory proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates, pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of neuronal cells) were identical: there were highly significant differences between DM and CON groups (P<0.001), but the effects were significantly moderated (P<0.01) in DM A compared with DM. These findings confirm the association of apoptosis with the encephalopathic effects of diabetes mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apop- totic cell death. All of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes. 相似文献
3.
Ates O Cayli SR Altinoz E Yucel N Kocak A Tarim O Durak A Turkoz Y Yologlu S 《Molecular and cellular biochemistry》2006,286(1-2):125-131
Both experimental and clinical studies suggests that oxidative stress plays an important role in the pathogenesis of diabetes mellitus type 1 and type 2. Hyperglycaemia leads to free radical generation and causes neural degeneration. In the present study we investigated the possible neuroprotective effect of mexiletine against streptozotocin-induced hyperglycaemia in the rat brain and spinal cord.30 adult male Wistar rats were divided into three groups: control, diabetic, and diabetic-mexiletine treated group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Mexiletine (50 mg/kg) was injected intraperitoneally every day for six weeks. After 6 weeks the brain, brain stem and cervical spinal cord of the rats were removed and the hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical analysis (the level of Malondialdehide [MDA], Nitric Oxide [NO], Reduced Glutathione [GSH], and Xanthine Oxidase [XO] activity). MDA, XO and NO levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group increased significantly, when compared with control and mexiletine groups (P < 0.05). GSH levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group decreased significantly when compared with control and mexiletine groups (P < 0.05).This study demonstrates that mexiletine protects the neuronal tissue against the diabetic oxidative damage. 相似文献
4.
《Saudi Journal of Biological Sciences》2017,24(6):1186-1194
Diabetic retinopathy (DR) is a severe complication of diabetes and the leading cause of blindness among working adults worldwide. DR is being widely recognized as a neurodegenerative disease of the retina, since, retinal neurons are damaged soon after diabetes onset. Diabetes-induced oxidative stress is considered as central factor that dysregulates neurotrophic factors and activates apoptosis, thereby damages neurons in the diabetic retina. Flavonoids being a powerful antioxidant have been considered to protect neurons in diabetic retina. The purpose of this study was to analyze the beneficial effects of flavonoid, quercetin to protect neurons in the diabetic rat retina. We quantitated the expression levels of BDNF, NGF, TrkB, synaptophysin, Akt, Bcl-2, cytochrome c and caspase-3 using Western blotting techniques in the diabetic retina with and without quercetin treatments and compared with non-diabetic rats. In addition, we employed ELISA techniques to determine the level of BDNF. Caspase-3 activity and the level of glutathione were analyzed by biochemical methods. Our results indicate that quercetin treatment to diabetic rats caused a significant increase in the level of neurotrophic factors and inhibited the level of cytochrome c and caspase-3 activity in the diabetic retina. Furthermore, the level of an anti-apoptotic protein Bcl-2 was augmented in quercetin treated diabetic retina. Thus, quercetin, may protect the neuronal damage in diabetic retina by ameliorating the levels of neurotrophic factors and also by inhibiting the apoptosis of neurons. Therefore, this study suggests that quercetin can be a suitable therapeutic agent to prevent neurodegeneration in diabetic retinopathy. 相似文献
5.
6.
Metallothioneins (MTs) are low-molecular weight cysteine- and metal-rich proteins with unquestionable metal binding capacity, antioxidant and anti-inflammatory properties, and a clear involvement in diverse physiological actions as inhibition of proapoptotic mechanisms, enhancement of cell survival, and tissue regeneration. Concurrent with this wide array of functions, MT-1/2 have been implicated in neuroprotection and neuroregeneration. The zinc binding capacity and antioxidant properties of MTs may account for most of their physiological features in the brain. However, some receptor-mediated actions of MT-1/2 have also been reported recently, a subject to be fully elucidated. This review analyses and updates the current knowledge on the actions of MTs related to neuroprotection and neuroregeneration in an effort to distinguish receptor-mediated actions of MTs from those arising from its zinc binding capacity and its antioxidant properties. 相似文献
7.
8.
Li F Wu X Zhao T Zhang M Zhao J Mao G Yang L 《Journal of trace elements in medicine and biology》2011,25(4):218-224
The chromium citrate complex [CrCIT] was synthesized and its structure was determined by infrared, UV-visible and atomic absorption spectroscopy, elemental and thermodynamic analysis. Anti-diabetic activity, oxidative DNA damage capacity and acute oral toxicity of [CrCIT] were investigated and compared with that of chromium trichloride hexahydrate. [CrCIT] was synthesized in a single step reaction by chelating chromium(III) with citric acid in aqueous solution. The molecular formula of [CrCIT] was inferred as CrC(6)H(5)O(7)·4H(2)O. The anti-diabetic activity of the complex [CrCIT] was assessed in alloxan-diabetic rats by daily oral gavage for 3 weeks. The biological activity results showed that the complex at the dose of 0.25-0.75 mg Cr/kg body weight could decrease the blood glucose level and increase liver glycogen level in alloxan-diabetic rats. [CrCIT] had more beneficial influences on the improvement of controlling blood glucose, serum lipid and liver glycogen levels compared with CrCl(3)·6H(2)O. Furthermore, [CrCIT] did not cause oxidative DNA damage under physiologically relevant conditions, and [CrCIT] did not produce any hazardous symptoms or deaths in acute oral toxicity test, showing the LD(50) value for female and male rats were higher than 15.1 g/kg body weight. The results suggested that [CrCIT] might represent a novel and proper chromium supplement with potential therapeutic value to control blood glucose in diabetes. 相似文献
9.
Zhu X Wang Y Ogawa O Lee HG Raina AK Siedlak SL Harris PL Fujioka H Shimohama S Tabaton M Atwood CS Petersen RB Perry G Smith MA 《Journal of neurochemistry》2004,89(5):1233-1240
While there is a host of pro-apoptotic stimuli that target neurons in Alzheimer disease (AD), given the chronicity of the disease and the survival of many neurons, those neurons must either avoid or, at minimum, delay apoptotic death signaling. In this study, we investigated Bcl-w, a novel member of the Bcl-2 family that promotes cell survival. In AD, we found increased levels of Bcl-w associated with neurofibrillary pathology and punctate intracytoplasmic structures whereas, in marked contrast, there are only low diffuse levels of Bcl-w in the neuronal cytoplasm of age-matched control cases. Immunoblot analysis confirmed that Bcl-w levels were significantly increased in AD. By electron microscopy, we determined that the increased Bcl-w expression in AD was ultrastructurally localized to mitochondria and neurofibrillary pathology. To investigate the cause and consequence of Bcl-w up-regulation in neurons, we found that fibrillized amyloid-beta led to increased Bcl-w protein levels in M17 human neuroblastoma cells, and that overexpression of Bcl-w significantly protected neurons against staurosporine- and amyloid-beta-induced apoptosis. Taken together, these series of results suggest that Bcl-w may play an important protective role in neurons in the diseased brain and that this aspect could be therapeutically harnessed to afford neuroprotection. 相似文献
10.
《Peptides》2016
IntroductionIschemic preconditioning (IPreC) can render the brain more tolerant to a subsequent potential lethal ischemic injury. Hyperglycemia has been shown to increase the size of ischemic stroke and worsen the clinical outcome following a stroke, thus exacerbating oxidative stress. Adropin has a significant association with cardiovascular disease, especially with diabetes. In this study, we aimed to evaluate the role of the IPreC due to modulating the expression of adropin and oxidative damage markers against stroke by induced transient middle cerebral artery occlusion (MCAo) in streptozotocin (STZ)-induced diabetic rats.Material-method72 male Spraque Dawley rats were allocated to 8 groups. In order to evaluate alterations of anti/oxidative status and adropin level, we induced transient MCAo seven days after STZ-induced diabetes. Also we performed IPreC 72 h before transient MCAo to assess whether IPreC could have a neuroprotective effect against ischemia-reperfusion injury.ResultsThe general characteristics of STZ-treated rats (STZ) included reduced body weight and elevated blood glucose levels compared to non-diabetic ones. Ischemic preconditioning before cerebral ischemia significantly reduced infarction size compared with the other groups [IPreC + MCAo (27 ± 11 mm3) vs. MCAo (109 ± 17 mm3) p < 0.001; STZ + IPreC + MCAo (38 ± 10 mm3) vs. STZ + MCAo (165 ± 45 mm3) p < 0.001, respectively]. The mean total antioxidant status level in IPreC groups was higher than other groups (p ≤ 0.05). Moreover, IPreC considerably decreased mean adropin levels compared with other groups (p ≤ 0.05).ConclusionThe study results supported the neuroprotective effects of ischemic preconditioning in MCA infarcts correlated with the level of oxidative damage markers and adropin. 相似文献
11.
《Phytomedicine》2021
BackgroundWhen redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis.PurposeThe present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro.MethodsSH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry.ResultsThe results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways.ConclusionThese results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways. 相似文献
12.
D Mladenović T Radosavljević D Hrnčić A Rašić-Marković N Puškaš N Maksić D Djuric O Stanojlović 《Canadian journal of physiology and pharmacology》2012,90(9):1219-1227
The aim of our study was to investigate the behavioral and electroencephalographic manifestations of thioacetamide-induced encephalopathy in rats. Male Wistar rats were divided among (i) control, saline-treated, and (ii) thioacetamide-treated groups (TAA(300) (300?mg/kg body mass); TAA(600) (600?mg/kg); and TAA(900) (900?mg/kg)). The daily dose of thioacetamide (300?mg/kg) was administered intraperitoneally once (TAA(300)), twice (TAA(600)), or 3 times (TAA(900)), on subsequent days. Behavioral manifestations were determined at 0, 2, 4, 6, and 24?h, while electroencephalographic changes were recorded 22-24?h after the last dose. General motor activity and exploratory behavior, as well as head shake, auditory startle reflex, placement, and equlibrium tests were diminished in the TAA(600) and TAA(900) groups compared with the control, and were absent in the TAA(900) group 24?h after treatment. Corneal, withdrawal, grasping, and righting reflexes were significantly diminished in the TAA(900) group compared with the control. Mean electroencephalographic power spectra density was significantly higher in TAA(300) and TAA(600) and lower in the TAA(900) group by comparison with the control. Only a score of 3 (mean dominant frequency?≤ 7.3?Hz and δ relative power?≥ 45%) was observed in the TAA(900) group. Thioacetamide induces encephalopathy in rats in a dose-dependent manner. A dose of 900?mg/kg TAA may be used as a suitable model of all stages of hepatic encephalopathy. 相似文献
13.
Wang ZY Wei XB Chen L Liu P Wang LX Zhang B Sun X Zhang XM 《The Chinese journal of physiology》2007,50(5):211-216
Our present study was performed to investigate whether hydroxyethylpuerarin (HEP) has a neuroprotective effect on brain injury after focal cerebral ischemia/reperfusion by middle cerebral artery occlusion (MCAO) in adult male Wistar rats. Animals were subjected to one hour of middle cerebral artery occlusion and 48 hours of reperfusion with the pretreatment of drugs (HEP 15, 30, 60 mg/ kg or nimodipine 0.4 mg/kg i.v.) or vehicle. The behavioral tests were used to evaluate the damage to central nervous system. The percentage of brain infarct area was assessed in the brain slices stained with 2% solution of 2, 3, 5-triphenyl tetrazolium chloride (TTC). The pathologic histological changes were observed by H&E staining and the occurrence of apoptosis was determined by flow cytometry. The results showed that pretreatment with HEP at doses of 15, 30, 60 mg/kg exhibited significant neuroprotective effects on rats against focal cerebral ischemia-reperfusion injury by markedly decreasing neurological deficit scores and the percentage of infarct area, reducing necrosis and apoptosis of neurons. All these findings suggest that HEP might provide neuroprotection against focal cerebral ischemia/reperfusion injury probably through its antioxidant and anti-inflammatory property. 相似文献
14.
Diabetes induces changes in the structural, biochemical, electrical, and contractile properties of skeletal muscles. Neuropeptide Y (NPY) administered locally can induce angiogenesis in a rat ischemic limb model and restore the contractile function of the ischemic muscle. The effects of NPY on the contractile characteristics of limb skeletal muscles were examined in streptozotocin-induced diabetic rats. Rats were treated with sham pellets (control groups) or NPY-containing pellets (1 mg of NPY/pellet, 14 days releasing time) administered locally to the rat hind limb 2 months after induction of diabetes. Contractile properties and fatigability of the slow-twitch soleus and fast-twitch gastrocnemius medials muscle were compared in control (sham), control NPY, diabetic (sham), and diabetic NPY groups. In order to induce fatigue trains of repetitive tetanic stimulation were used (600 ms/1 s simulation-rest cycle per train, 112 trains at an 85-Hz fusion frequency). Two months of untreated diabetes significantly prolonged soleus contraction and slowed its relaxation, but had minimal effects on soleus tension. NPY ameliorated the diabetic effects on soleus speed-related contractile properties, restoring its contraction and relaxation times. Diabetes significantly reduced gastrocnemius medials tetanic tension, leaving its contractile characteristics mostly unaffected. NPY partially restored gastrocnemius tetanic tension production capacity. Diabetes significantly increased fatigability of both muscles, which was partially restored by NPY, as evidenced by restored endurance of soleus muscle. The results suggest that NPY administered locally tends to normalize muscle performance and improve fatigue resistance of skeletal muscles in streptozotocin diabetes. Further examination is needed to establish the mechanisms of local NPY action on muscle contractile properties in streptozotocin-induced diabetes. 相似文献
15.
Yono M Latifpour J Yoshida M Ueda S 《Journal of receptor and signal transduction research》2005,25(3):147-157
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats. 相似文献
16.
We assessed the effect of Azadirachta indica (A. indica), a plant that has been reported to possess antioxidant, anti-inflammatory and anxiolytic properties, on cerebral reperfusion injury and long term cerebral hypoperfusion. When blood flow to brain region that has undergone critical period of ischemia is re-established, additional injury is to be expected from the reperfusion. In the present study, bilateral common carotid artery (BCCA) occlusion for 30 min followed by 45 min reperfusion resulted in increase in lipid peroxidation, superoxide dismutase (SOD) activity and fall in total tissue sulfhydryl (T-SH) groups. A. indica pretreatment (500 mg/kg/day x 7 days) attenuated the reperfusion induced enhanced lipid peroxidation, SOD activity and prevented fall in T-SH groups. Moreover, A.indica per se increased brain ascorbic acid level, which was unchanged during reperfusion insult. Long-term cerebral hypoperfusion induced by permanent BCCA occlusion has been reported to cause behavioral and histopathological abnormalities. In the present study, as tested by open field paradigm and Morris' water maze, a propensity towards anxiety and disturbances of learning/memory were observed in animals subjected to hypoperfusion for 2 weeks. A. indica (500 mg/kg/day x 15 days) significantly reduced these hypoperfusion induced functional disturbances. Reactive changes in brain histology like gliosis, perivascular lymphocytic infiltration, recruitment of macrophages and cellular edema following long term hypoperfusion were also attenuated effectively by A. indica. We conclude that our study provides an experimental evidence for possible neuroprotective potentiality of A. indica. 相似文献
17.
Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury. 相似文献
18.
AimsA growing number of studies demonstrate that valproic acid (VPA), an anti-convulsant and mood-stabilizing drug, is neuroprotective against various insults. This study investigated whether treatment of ischemic stroke with VPA ameliorated hippocampal cell death and cognitive deficits. Possible mechanisms of action were also investigated.Main methodsGlobal cerebral ischemia was induced to mimic ischemia/reperfusion (I/R) damage. The pyramidal cells within the CA1 field were stained with cresyl violet. Cognitive ability was measured 7 days after I/R using a Morris water maze. The anti-inflammatory effects of VPA on microglia were also investigated by immunohistochemistry. Pro-inflammatory cytokine production was determined using enzyme-linked immunosorbent assays (ELISA). Western blot analysis was performed to determine the levels of acetylated H3, H4 and heat shock protein 70 (HSP70) in extracts from the ischemic hippocampus.Key findingsVPA significantly increased the density of neurons that survived in the CA1 region of the hippocampus on the 7th day after transient global ischemia. VPA ameliorated severe deficiencies in spatial cognitive performance induced by transient global ischemia. Post-insult treatment with VPA also dramatically suppressed the activation of microglia but not astrocytes, reduced the number of microglia, and inhibited other inflammatory markers in the ischemic brain. VPA treatment resulted in a significant increase in levels of acetylated histones H3 and H4 as well as HSP70 in the hippocampus.SignificanceOur results indicated that VPA protected against hippocampal cell loss and cognitive deficits. Treatment with VPA following cerebral ischemia probably involves multiple mechanisms of action, including inhibition of ischemia-induced cerebral inflammation, inhibition of histone deacetylase (HDAC) and induction of HSP. 相似文献
19.
Carvalho AS Torres LB Persike DS Fernandes MJ Amado D Naffah-Mazzacoratti Mda G Cavalheiro EA da Silva AV 《Neurochemistry international》2011,58(3):385-390
Recent research data have shown that systemic administration of pyruvate and oxaloacetate causes an increased brain-to-blood glutamate efflux. Since increased release of glutamate during epileptic seizures can lead to excitotoxicity and neuronal cell death, we tested the hypothesis that glutamate scavenging mediated by pyruvate and oxaloacetate systemic administration could have a neuroprotective effect in rats subjected to status epilepticus (SE). SE was induced by a single dose of pilocarpine (350mg/kgi.p.). Thirty minutes after SE onset, a single dose of pyruvate (250mg/kgi.p.), oxaloacetate (1.4mg/kgi.p.), or both substances was administrated. Acute neuronal loss in hippocampal regions CA1 and hilus was quantitatively determined five hours after SE onset, using the optical fractionator method for stereological cell counting. Apoptotic cascade in the hippocampus was also investigated seven days after SE using caspase-1 and -3 activity assays. SE-induced neuronal loss in CA1 was completely prevented in rats treated with pyruvate plus oxaloacetate. The SE-induced caspase-1 activation was significantly reduced when rats were treated with oxaloacetate or pyruvate plus oxaloacetate. The treatment with pyruvate and oxaloacetate caused a neuroprotective effect in rats subjected to pilocarpine-induced SE. 相似文献
20.
Albumin catabolism in diabetic rats 总被引:2,自引:0,他引:2
The kinetics of albumin catabolism were studied in normal rats and rats with streptozotocin induced diabetes (blood glucose greater than 500 mg%). Whether determined from the clearance of 125I-albumin from plasma or from the whole body, after 10 days of severe, uncontrolled diabetes there was a 30-35% decrease in the catabolic rate for albumin in the diabetic rats compared to normals. There was also about a 35% contraction of the relative extravascular distribution volume for albumin in the diabetic rats, and about a 25% decrease in the total body mass of albumin. However, the concentration of albumin in the circulation was the same in normal and diabetic animals. We conclude that when the rate of albumin synthesis is substantially depressed in diabetes, the rat maintains normal plasma albumin concentration both by decreasing albumin's fractional catabolic rate and by shifting albumin from the extravascular to the vascular compartment. 相似文献