首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Proper cell division requires strict coordination between mitotic exit and cytokinesis. In the event of a mitotic error, cytokinesis must be inhibited to ensure equal partitioning of genetic material. In the fission yeast, Schizosaccharomyces pombe, the checkpoint protein and E3 ubiquitin ligase, Dma1, delays cytokinesis by inhibiting the septation initiation network (SIN) when chromosomes are not attached to the mitotic spindle. To elucidate the mechanism by which Dma1 inhibits the SIN, we screened all SIN components as potential Dma1 substrates and found that the SIN scaffold protein, Sid4, is ubiquitinated in vivo in a Dma1-dependent manner. To investigate the role of Sid4 ubiquitination in checkpoint function, a ubiquitination deficient sid4 allele was generated and our data indicate that Sid4 ubiquitination by Dma1 is required to prevent cytokinesis during a mitotic checkpoint arrest. Furthermore, Sid4 ubiquitination delays recruitment of the Polo-like kinase and SIN activator, Plo1, to spindle pole bodies (SPBs), while at the same time prolonging residence of the SIN inhibitor, Byr4, providing a mechanistic link between Dma1 activity and cytokinesis inhibition.  相似文献   

2.
Proper transmission of genetic information requires correct assembly and positioning of the mitotic spindle, responsible for driving each set of sister chromatids to the two daughter cells, followed by cytokinesis. In case of altered spindle orientation, the spindle position checkpoint inhibits Tem1-dependent activation of the mitotic exit network (MEN), thus delaying mitotic exit and cytokinesis until errors are corrected. We report a functional analysis of two previously uncharacterized budding yeast proteins, Dma1 and Dma2, 58% identical to each other and homologous to human Chfr and Schizosaccharomyces pombe Dma1, both of which have been previously implicated in mitotic checkpoints. We show that Dma1 and Dma2 are involved in proper spindle positioning, likely regulating septin ring deposition at the bud neck. DMA2 overexpression causes defects in septin ring disassembly at the end of mitosis and in cytokinesis. The latter defects can be rescued by either eliminating the spindle position checkpoint protein Bub2 or overproducing its target, Tem1, both leading to MEN hyperactivation. In addition, dma1Delta dma2Delta cells fail to activate the spindle position checkpoint in response to the lack of dynein, whereas ectopic expression of DMA2 prevents unscheduled mitotic exit of spindle checkpoint mutants treated with microtubule-depolymerizing drugs. Although their primary functions remain to be defined, our data suggest that Dma1 and Dma2 might be required to ensure timely MEN activation in telophase.  相似文献   

3.
In the fission yeast Schizosaccharomyces pombe, the septation initiation network (SIN) triggers cytokinesis after mitosis. We investigated the relationship between Dma1p, a spindle checkpoint protein and cytokinesis inhibitor, and the SIN. Deletion of dma1 inactivates the spindle checkpoint and allows precocious SIN activation, while overexpressing Dma1p reduces SIN signaling. Dma1p seems to function by inhibiting the SIN activator, Plo1p kinase, since dma1 overexpression and deletion phenotypes suggest that Dma1p antagonizes Plo1p localization. Furthermore, failure to maintain high cyclin-dependent kinase (CDK) activity during spindle checkpoint activation in dma1 deletion cells requires Plo1p. Dma1p itself localizes to spindle pole bodies through interaction with Sid4p. Our observations suggest that Dma1p functions to prevent mitotic exit and cytokinesis during spindle checkpoint arrest by inhibiting SIN signaling.  相似文献   

4.
In fission yeast (Schizosaccharomyces pombe), the E3 ubiquitin ligase Dma1 delays cytokinesis if chromosomes are not properly attached to the mitotic spindle. Dma1 contains a C-terminal RING domain, and we have found that the Dma1 RING domain forms a stable homodimer. Although the RING domain is required for dimerization, residues in the C-terminal tail are also required to help form or stabilize the dimeric structure because mutation of specific residues in this region disrupts Dma1 dimerization. Further analyses showed that Dma1 dimerization is required for proper localization at spindle pole bodies and the cell division site, E3 ligase activity, and mitotic checkpoint function. Thus, Dma1 forms an obligate dimer via its RING domain, which is essential for efficient transfer of ubiquitin to its substrate(s). This study further supports the mechanistic paradigm that many RING E3 ligases function as RING dimers.  相似文献   

5.
6.
In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1(+) is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.  相似文献   

7.
A molecular pathway homologous to the S. cerevisiae mitotic exit network (MEN) and S. pombe septation initiation network has recently been described in higher eukaryotes and involves the tumor suppressor kinase LATS1 and its subunit MOB1A. The yeast MEN/septation initiation network pathways are regulated by the ubiquitin ligase defective in mitotic arrest 1 (Dma1p), a checkpoint protein that helps maintain prometaphase arrest when cells are exposed to microtubule poisons. We identified here the RING domain protein ring finger 8 (RNF8) as the human orthologue of the yeast protein Dma1p. Like its yeast counterparts, human DMA1/RNF8 localized at the midbody and its depletion by siRNA compromised mitotic arrest of nocodazole-treated cells in a manner dependent on the MEN. Depletion of MAD2, a spindle checkpoint protein, also compromised mitotic arrest, but in a MEN-independent manner. Thus, two distinct checkpoint pathways maintain mitotic arrest in cells exposed to microtubule poisons.  相似文献   

8.
A cDNA encoding a ubiquitin-conjugating enzyme designated UbcP4 in fission yeast was isolated. Disruption of its genomic gene revealed that it was essential for cell viability. In vivo depletion of the UbcP4 protein demonstrated that it was necessary for cell cycle progression at two phases, G2/M and metaphase/anaphase transitions. The G2 arrest of UbcP4-depleted cells was dependent upon chk1, which mediates checkpoint pathway. UbcP4-depleted cells arrested at metaphase had condensed chromosomes but were defective in separation. However, septum formation and cytokinesis were not restrained during the metaphase arrest. Overexpression of UbcP4 specifically rescued the growth defect of cut9ts cells at a restrictive temperature. cut9 encodes a component of the anaphase-promoting complex (APC) which is required for chromosome segregation at anaphase and moreover is defined as cyclin-specific ubiquitin ligase. Cdc13, a mitotic cyclin in fission yeast, was accumulated in the UbcP4-depleted cells. These results strongly suggested that UbcP4 is a ubiquitin-conjugating enzyme working in conjunction with APC and mediates the ubiquitin pathway for degradation of "sister chromatid holding protein(s)" at the onset of anaphase and possibly of mitotic cyclin at the exit of mitosis.  相似文献   

9.
Coordination of mitosis and cytokinesis is crucial for ensuring proper chromosome segregation and genomic stability. In Schizosaccharomyces pombe, the sid genes (cdc7, cdc11, cdc14, spg1, sid1, sid2 and sid4) define a signaling pathway that regulates septation and cytokinesis. Here we describe the characterization of a novel protein kinase, Sid1p. Sid1p localizes asymmetrically to one spindle pole body (SPB) in anaphase. Sid1p localization is maintained during medial ring constriction and septum synthesis and disappears prior to cell separation. Additionally, we found that Cdc14p is in a complex with Sid1p. Epistasis analysis places Sid1p-Cdc14p downstream of Spg1p-Cdc7p but upstream of Sid2p. Finally, we show that cyclin proteolysis during mitosis is unaffected by inactivating the sid pathway; in fact, loss of Cdc2-cyclin activity promotes Sid1p-Cdc14p association with the SPB, possibly providing a mechanism that couples cytokinesis with mitotic exit.  相似文献   

10.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase mediating targeted proteolysis through ubiquitination of protein substrates to control the progression of mitosis. The APC/C recognizes its substrates through two adapter proteins, Cdc20 and Cdh1, which contain similar C-terminal domains composed of seven WD-40 repeats believed to be involved in interacting with their substrates. During the transition from metaphase to anaphase, APC/C-Cdc20 mediates the ubiquitination of securin and cyclin B1, allowing the activation of separase and the onset of anaphase and mitotic exit. APC/C-Cdc20 and APC/C-Cdh1 have overlapping substrates. It is unclear whether they are redundant for mitosis. Using a gene-trapping approach, we have obtained mice which lack Cdc20 function. These mice show failed embryogenesis. The embryos were arrested in metaphase at the two-cell stage with high levels of cyclin B1, indicating an essential role of Cdc20 in mitosis that is not redundant with that of Cdh1. Interestingly, Cdc20 and securin double mutant embryos could not maintain the metaphase arrest, suggesting a role of securin in preventing mitotic exit.  相似文献   

11.
12.
The budding yeast proteins Dma1 and Dma2 are members of the unique FHA-RING domain protein family and are linked to mitotic regulation and septin organization by ill-defined mechanisms. We show that Dma2 has ubiquitin ligase activity, and that septins Shs1 and Cdc11 are likely direct in vivo targets. We further propose that human RNF8, rather than Chfr, is the mammalian Dma homolog. As in yeast, RNF8 localizes to the centrosomes and cell division sites and promotes ubiquitylation of the septin SEPT7, whose depletion increases cell division anomalies. Together, these findings reveal evolutionary and functional conservation of Dma proteins, and suggest that RNF8 maintains genome stability through independent, yet analogous, nuclear and cytoplasmic ubiquitylation activities.  相似文献   

13.
Plo1-associated casein kinase activity peaked during mitosis before septation. Phosphatase treatment abolished this activity. Mitotic Plo1 activation had a requirement for prior activation of M-phase promoting factor (MPF), suggesting that Plo1 does not act as a mitotic trigger kinase to initiate MPF activation during mitotic commitment. A link between Plo1 and the septum initiating network (SIN) has been suggested by the inability of plo1 Delta cells to septate and the prolific septation following plo1(+) overexpression. Interphase activation of Spg1, the G protein that modulates SIN activity, induced septation but did not stimulate Plo1-associated kinase activity. Conversely, SIN inactivation did not affect the mitotic stimulation of Plo1-associated kinase activity. plo1.ts4 cells formed a misshapen actin ring, but rarely septated at 36 degrees C. Forced activation of Spg1 enabled plo1.ts4 mutant cells, but not cells with defects in the SIN component Sid2, to convert the actin ring to a septum. The ability of plo1(+) overexpression to induce septation was severely compromised by SIN inactivation. We propose that Plo1 acts before the SIN to control septation.  相似文献   

14.
Ross KE  Cohen-Fix O 《Genetics》2003,165(2):489-503
Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G(1) transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1delta and mad2delta single mutants, the mad2delta cdh1delta double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2delta cdh1delta and pds1delta cdh1dDelta strains were rescued by overexpressing Swe1p, a G(2)/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1delta mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.  相似文献   

15.
16.
Mitotic exit integrates the reversal of the phosphorylation events initiated by mitotic kinases with a controlled cytokinesis event that cleaves the cell in two. The mitotic exit network (MEN) of budding yeast regulates both processes, whereas the fission yeast equivalent, the septum initiation network (SIN), controls only the execution of cytokinesis. The components and architecture of the SIN and MEN are highly conserved. At present, it is assumed that the functions of the core SIN-MEN components are restricted to their characterized roles at the end of mitosis. We now show that the NDR (nuclear Dbf2-related) kinase component of the fission yeast SIN, Sid2-Mob1, acts independently of the other known SIN components in G2 phase of the cell cycle to control the timing of mitotic commitment. Sid2-Mob1 promotes mitotic commitment by directly activating the NIMA (Never In Mitosis)-related kinase Fin1. Fin1's activation promotes its own destruction, thereby making Fin1 activation a transient feature of G2 phase. This spike of Fin1 activation modulates the activity of the Pom1/Cdr1/Cdr2 geometry network towards?Wee1.  相似文献   

17.
Homeostatic maintenance of cellular mitochondria requires a dynamic balance between fission and fusion, and controlled changes in morphology are important for processes such as apoptosis and cellular division. Interphase mitochondria have been described as an interconnected network that fragments as cells enter mitosis, and this mitotic mitochondrial fragmentation is known to be regulated by the dynamin-related GTPase Drp1 (dynamin-related protein 1), a key component of the mitochondrial division machinery. Loss of Drp1 function and the subsequent failure of mitochondrial division during mitosis lead to incomplete cytokinesis and the unequal distribution of mitochondria into daughter cells. During mitotic exit and interphase, the mitochondrial network reforms. Here we demonstrate that changes in mitochondrial dynamics as cells exit mitosis are driven in part through ubiquitylation of Drp1, catalyzed by the APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its coactivator Cdh1) E3 ubiquitin ligase complex. Importantly, inhibition of Cdh1-mediated Drp1 ubiquitylation and proteasomal degradation during interphase prevents the normal G1 phase regrowth of mitochondrial networks following cell division.  相似文献   

18.
Li L  Zhou Y  Sun L  Xing G  Tian C  Sun J  Zhang L  He F 《Cellular signalling》2007,19(10):2046-2055
Microtubule associated proteins are involved in regulation of microtubule dynamics. Its mutation and dysregulation result in severe consequences such as mitotic block and apoptosis. NuSAP has been reported as a microtubule associated protein, depletion of which by RNAi results in spindle deficiency and cytokinesis failure. However, its role in regulation of cell cycle and how NuSAP protein is controlled during cell cycle progression still remains unclear. Here we show that NuSAP can be ubiquitinated and degraded by APC/C-hCdh1 E3 ligase. Evolutionally conserved KEN box functions as the degron of NuSAP. Overexpression of NuSAP induces mitotic arrest and the microtubule associated domain and nuclear localization are both required for NuSAP to induce mitotic arrest. Furthermore, overexpression of NuSAP results in cells accumulation with microtubule bundling and spindle deficiency. Thus, our results give evidence for the first time that NuSAP protein level is tightly regulated by the APC/C ubiquitin ligase complex and NuSAP induces mitotic arrest dependent of its microtubule affinity.  相似文献   

19.
Animal cells undergo dramatic actin-dependent changes in shape as they progress through mitosis; they round up upon mitotic entry and elongate during chromosome segregation before dividing into two [1-3]. Moesin, the sole Drosophila ERM-family protein [4], plays a critical role in this process, through the construction of a stiff, rounded metaphase cortex [5-7]. At mitotic exit, this rigid cortex must be dismantled to allow for anaphase elongation and cytokinesis through the loss of the active pool of phospho-Thr559moesin from cell poles. Here, in an RNA interference (RNAi) screen for phosphatases involved in the temporal and spatial control of moesin, we identify PP1-87B RNAi as having elevated p-moesin levels and reduced cortical compliance. In mitosis, RNAi-induced depletion of PP1-87B or depletion of a conserved noncatalytic PP1 phosphatase subunit Sds22 leads to defects in p-moesin clearance from cell poles at anaphase, a delay in anaphase elongation, together with defects in bipolar anaphase relaxation and cytokinesis. Importantly, similar cortical defects are seen at anaphase following the expression of a constitutively active, phosphomimetic version of moesin. These data reveal a new role for the PP1-87B/Sds22 phosphatase, an important regulator of the metaphase-anaphase transition, in coupling moesin-dependent cell shape changes to mitotic exit.  相似文献   

20.
In the budding yeast Saccharomyces cerevisiae, cell cycle progression and cytokinesis at mitotic exit are proposed to be linked by CDC14 phosphatase antagonizing the function of mitotic B-type cyclin (CLBs). We have isolated a temperature-sensitive mutant, cdc14(A280V), with a mutation in the conserved phosphatase domain. Prolonged arrest in the cdc14(A280V) mutant partially uncoupled cell cycle progression from the completion of cytokinesis as measured by bud re-emergence, in the form of elongated apical projections, and DNA re-replication. In contrast to previous mitotic exit mutants, cdc14(A280V) mutants displayed a strong bias for the first apical projection to form in the mother cell body. Using cdc14(A280V) mutant phenotypes, the functions of the B-type cyclins at mitotic exit were investigated. The preference in mother-daughter apical projection formation was observed to be independent of any individual CLB function. However, cdc14(A280V)clb1Δ cells displayed a pronounced increase in apical projections, while cdc14(A280V)clb3Δ cells were observed to form round cellular chains. While cdc14(A280V) cells arrested at mitotic exit, both cdc14(A280V)clb1Δ and cdc14(A280V)clb3Δ cells completed cytokinesis, but failed cell separation. cdc14(A280V)clb2Δ cells displayed a defect in actin ring assembly. These observations differentiate the functions of CLB1, CLB2, and CLB3 at mitotic exit, and are consistent with the hypothesis that CLB activities are antagonized by the CDC14 phosphatase in order to couple cell cycle progression with cytokinesis at mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号