首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferryl compounds [Fe(IV)=O] in living organisms play an essential role in the radical catalytic cycle and degradation processes of hemeproteins. We studied the reactions between H2O2 and hemoglobin II (HbII) (GlnE7, TyrB10, PheCD1, PheE11), recombinant hemoglobin I (HbI) (GlnE7, PheB10, PheCD1, PheE11), and the HbI PheB10Tyr mutant of L. pectinata. We found that the tyrosine residue in the B10 position tailors, in two very distinct ways, the reactivity of the ferryl species, compounds I and II. First, increasing the reaction pH from 4.86 to 7.50, and then to 11.2, caused the the second-order rate constant for HbII to decrease from 141.60 to 77.78 M−1 s−1, and to 2.96 M−1 s−1, respectively. This pH dependence is associated with the disruption of the heme–tyrosine (603 nm) protein moiety, which controls the access of the H2O2 to the hemeprotein active center, thus regulating the formation of the ferryl species. Second, the presence of compound I was evident in the UV–vis spectra (648-nm band) in the reactions of HbI and recombinant HbI with H2O2, This band, however, is completely absent in the analogous reaction with HbII and the HbI PheB10Tyr mutant. Therefore, the existence of a hydrogen-bonding network between the heme pocket amino acids (i.e., TyrB10) and the ferryl compound I created a path much faster than 3.0×10−2 s−1 for the decay of compound I to compound II. Furthermore, the decay of the heme ferryl compound I to compound II was independent of the proximal HisF8 trans-ligand strength. Thus, the pH dependence of the heme–tyrosine moiety complex determined the overall reaction rate of the oxidative reaction limiting the interaction with H2O2 at neutral pH. The hydrogen-bonding strength between the TyrB10 and the heme ferryl species suggests the presence of a cycle where the ferryl consumption by the ferric heme increases significantly the pseudoperoxidase activity of these hemeproteins.  相似文献   

2.
The distal pocket of hemoglobin II (HbII) from Lucina pectinata is characterized by the presence of a GlnE7 and a TyrB10. To elucidate the functional properties of HbII, biophysical studies were conducted on HbII and a HbI PheB10Tyr site-directed mutant. The pH titration data at neutral conditions showed visible bands at 486, 541, 577 and 605 nm for both proteins. This suggests the possible existence of a conformational equilibrium between an open and closed configuration due to the interactions of the TyrB10, ligand, and heme iron. The kinetic behavior for the reaction of both ferric proteins with H2O2 indicates that the rate for the formation of the ferryl intermediates species varies with pH, suggesting that the reaction is strongly dependent on the conformational states. At basic pH values, the barrier for the reaction increases as the tyrosine adopts a closed conformation and the ferric hydroxyl replaces the met-aquo species. The existence of these conformers is further supported by resonance Raman (RR) data, which indicate that in a neutral environment, the ferric HbII species is present as a possible mixture of coordination and spin states, with values at 1558 and 1580 cm(-1) for the nu2 marker, and 1479, 1492, and 1503 cm(-1) for the nu3 mode. Moreover, the presence of the A3 and A(o) conformers at 1924 and 1964 cm(-1) in the HbII-CO infrared spectra confirms the existence of an open and closed conformation due to the orientation of the TyrB10 with respect to the heme active center.  相似文献   

3.
Monomeric hemoglobin from the trematode Paramphistomum epiclitum displays very high oxygen affinity (P(50)<0.001 mm Hg) and an unusual heme distal site containing tyrosyl residues at the B10 and E7 positions. The crystal structure of aquo-met P. epiclitum hemoglobin, solved at 1.17 A resolution via multiwavelength anomalous dispersion techniques (R-factor=0.121), shows that the heme distal site pocket residue TyrB10 is engaged in hydrogen bonding to the iron-bound ligand. By contrast, residue TyrE7 is unexpectedly locked next to the CD globin region, in a conformation unsuitable for heme-bound ligand stabilisation. Such structural organization of the E7 distal residue differs strikingly from that observed in the nematode Ascaris suum hemoglobin (bearing TyrB10 and GlnE7 residues), which also displays very high oxygen affinity. The oxygenation and carbonylation parameters of wild-type P. epiclitum Hb as well as of single- and double-site mutants, with residue substitutions at positions B10, E7 and E11, have been determined and are discussed here in the light of the protein atomic resolution crystal structure.  相似文献   

4.
The fine structural properties of the distal heme pocket have been probed by infrared spectroscopy of ferrous carbon monoxy human hemoglobin mutants carrying the mutations LeuB10-->Tyr and HisE7-->Gln on the alpha, beta, and both chains, respectively. The stretching frequency of iron-bound carbon monoxide occurs as a single broad band around 1943 cm(-1) in both the alpha and the beta mutated chains. Such a frequency value indicates that no direct hydrogen bonding exists between the bound CO molecule and the TyrB10 phenolic oxygen, at variance with other naturally occurring TyrB10, GlnE7 nonvertebrate hemoglobins. The rates of carbon monoxide release have been determined for the first time by a Fourier transform infrared spectroscopy stopped-flow technique that allowed us to single out the heterogeneity in the kinetics of CO release in the alpha and beta chains for the mutated proteins and for native HbA. The rates of CO release are 15- to 20-fold faster for the mutated alpha or beta chains with respect to the native ones consistent with the lack of distal stabilization on the iron-bound CO molecule. The present results demonstrate that residues in key topological positions (namely E7 and B10) for the distal steric control of the iron-bound ligand are not interchangeable among hemoglobins from different species.  相似文献   

5.
Lucina pectinata hemoglobin I (HbI), which is a ferric sulfide-reactive hemeprotein, contains a distal pocket characterized by the presence of GlnE7 and PheB10. To elucidate the structural-functional properties of HbI, oxygen binding kinetics and FTIR studies with recombinant HbI (rHbI) and a set of mutants were conducted using CO and CN- as sensors of the hemeprotein environment. Three nuCO modes were observed for rHbI at 1936 cm(-1) (A3, closed conformer) 1950 cm(-1) (A1,2, closed conformer) and 1960 cm(-1) (A0, open conformer). These nuCO were affected by substitution of GlnE7 and PheB10 in the CO complexes. The contribution of GlnE7 is demonstrated when this residue is replaced with Asn, Val or His. For instance, decreasing the positive electrostatic environment with GlnE7Val, causes an increase of 65% in the population of A0 and the disappearance and 55% reduction of the population of the A1,2 and A3 respectively. The contribution of PheB10 to the stabilization of ligands is also observed in the Leu and Tyr mutants. The PheB10Leu mutation produced an 8% decrease in the population of the A3 conformer while that of the A1,2 configuration increased by 30%. This suggests that GlnE7 and PheB10 contribute to the A3 conformer stabilizing the CO in a closed configuration. With CN- as probe no substantial differences in the nuCN was observed upon substitution of GlnE7 by Val while a slight down shift in the nuCN from 2120 cm(-1) to 2117 cm(-1) was observed in the PheB10Leu mutant. This implies that in HbICN GlnE7 moves away from the binding site while PheB10 remains in the vicinity of the bound CN-. Here, a mechanism in which the flexibility of the distal protein matrix coupled with hemeporphyrin movement toward a different configuration is suggested as an important process in the H2S transport and delivery in hemoglobin I.  相似文献   

6.
Myoglobin (Mb) uses strong electrostatic interaction in its distal heme pocket to regulate ligand binding. The mechanism of regulation of ligand binding in soybean leghemoglobin a (Lba) has been enigmatic and more so due to the absence of gaseous ligand bound atomic resolution three‐dimensional structure of the plant globin. While the 20‐fold higher oxygen affinity of Lba compared with Mb is required for its dual physiological function, the mechanism by which this high affinity is achieved is only emerging. Extensive mutational analysis combined with kinetic and CO‐FT‐IR spectroscopic investigation led to the hypothesis that Lba depended on weakened electrostatic interaction between distal HisE7 and bound ligand achieved by invoking B10Tyr, which itself hydrogen bonds with HisE7 thus restricting it in a single conformation detrimental to Mb‐like strong electrostatic interaction. Such theory has been re‐assessed here using CO‐Lba in silico model and molecular dynamics simulation. The investigation supports the presence of at least two major conformations of HisE7 in Lba brought about by imidazole ring flip, one of which makes hydrogen bonds effectively with B10Tyr affecting the former's ability to stabilize bound ligand, while the other does not. However, HisE7 in Lba has limited conformational freedom unlike high frequency of imidazole ring flips observed in Mb and in TyrB10Leu mutant of Lba. Thus, it appears that TyrB10 limits the conformational freedom of distal His in Lba, tuning down ligand dissociation rate constant by reducing the strength of hydrogen bonding to bound ligand, which the freedom of distal His of Mb allows. Proteins 2015; 83:1836–1848. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Blood pressure elevation has been attributed in large part to the consumption of nitric oxide (NO) by extracellular hemoglobin (Hb) therapeutics following infusion in humans. We studied NO and hydrogen peroxide (H2O2) oxidative reaction kinetics of monomeric Hbs isolated from the clam Lucina pectinata to probe the effects of their distinctive heme pocket chemistries on ligand controls and heme oxidative stability. HbI (Phe43(CD1), Gln64(E7), Phe29(B10), and Phe68(E11)) reacted with high avidity with NO (k'(ox,NO) = 91 microM-1 s-1), whereas HbII (Phe44(CD1), Gln65(E7), Tyr30(B10), and Phe69(E11)) reacted at a much slower rate (k'(ox,NO)= 2.8 microM-1 s-1). However, replacing B10 (Phe) by Tyr in recombinant HbI (HbI PheB10Tyr) produced only a 2-fold reduction in the NO-induced oxidation rate (k'(ox,NO)= 49.9 microM-1 s-1). Among the clam Hbs, HbII exhibited the fastest NO dissociation and the slowest NO association with ferrous iron. Autoxidation, H2O2-mediated ferryl iron (FeIV) formation, and the subsequent heme degradation kinetics were much slower in HbII and HbI PheB10Tyr when compared to those of HbI. The Tyr(B10) residue appears to afford a greater heme oxidative stability advantage toward H2O2, whereas the close proximity of this residue together with Gln(E7) to the heme iron contributes largely to the distal control of NO binding. Engineering of second-generation Hb-based oxygen therapeutics that are resistant to NO/H2O2-driven oxidation may ultimately require further optimization of the heme pocket architecture to limit heme exposure to solvent.  相似文献   

8.
The nerve tissue hemoglobin of Cerebratulus lacteus (CerHb) is the smallest naturally occurring known hemoglobin. Stabilization of the diatomic bound species (e.g., O(2)) is achieved through a network of hydrogen bonds based on three key residues TyrB10, GlnE7, and ThrE11. The first two residues are typically associated in hemoglobins with enhanced O(2) affinity, related to hydrogen bond stabilization of the heme-bound O(2) resulting in a decrease of the ligand dissociation rates. In contrast to the above observations, the affinity of CerHb for O(2) is only moderate, and the rate of O(2) dissociation is unexpectedly high. To gain insight on the diverse molecular mechanisms controlling ligand affinities, we have analyzed w.t. CerHb and its ThrE11-->Val mutant by means of joint molecular dynamics and quantum mechanics simulation techniques, complementing recent site-directed mutagenesis experiments. Our results suggest that the observed O(2) dissociation rates can only be explained through a dynamic equilibrium between high and low affinity states of the w.t. CerHb heme distal site.  相似文献   

9.
Cyanide is one of the few diatomic ligands able to interact with the ferric and ferrous heme-Fe atom. Here, the X-ray crystal structure of the cyanide derivative of ferric Mycobacterium tuberculosis truncated hemoglobin-N (M. tuberculosis trHbN) has been determined at 2.0 A (R-general = 17.8% and R-free = 23.5%), and analyzed in parallel with those of M. tuberculosis truncated hemoglobin-O (M. tuberculosis trHbO), Chlamydomonas eugametos truncated hemoglobin (C. eugametos trHb), and sperm whale myoglobin, generally taken as a molecular model. Cyanide binding to M. tuberculosis trHbN is stabilized directly by residue TyrB10(33), which may assist the deprotonation of the incoming ligand and the protonation of the outcoming cyanide. In M. tuberculosis trHbO and in C. eugametos trHb the ligand is stabilized by the distal pocket residues TyrCD1(36) and TrpG8(88), and by the TyrB10(20) - GlnE7(41) - GlnE11(45) triad, respectively. Moreover, kinetics for cyanide binding to ferric M. tuberculosis trHbN and trHbO and C. eugametos trHb, for ligand dissociation from the ferrous trHbs, and for the reduction of the heme-Fe(III)-cyanide complex have been determined, at pH 7.0 and 20.0 degrees C. Despite the different heme distal site structures and ligand interactions, values of the rate constant for cyanide binding to ferric (non)vertebrate heme proteins are similar, being influenced mainly by the presence in the heme pocket of proton acceptor group(s), whose function is to assist the deprotonation of the incoming ligand (i.e., HCN). On the other hand, values of the rate constant for the reduction of the heme-Fe(III)-cyanide (non)vertebrate globins span over several orders of magnitude, reflecting the different ability of the heme proteins considered to give productive complex(es) with dithionite or its reducing species SO(2)(-). Furthermore, values of the rate constant for ligand dissociation from heme-Fe(II)-cyanide (non)vertebrate heme proteins are very different, reflecting the different nature and geometry of the heme distal residue(s) hydrogen-bonded to the heme-bound cyanide.  相似文献   

10.
The expression of nerve hemoglobins in invertebrates is a well-established fact, but this occurrence is uncommon. In the species where nerve globins occur, they probably function as an oxygen store for sustaining activity of the nerves during anoxic conditions. Although invertebrate nerve globins are functionally similar with respect to O2 affinity, they are by no means uniform in structure and can differ in size, cellular localization and heme-coordination. The best-studied nerve globin is the mini-globin of Cerebratulus lacteus, which belongs to a class of globins containing the polar TyrB10/GlnE7 pair in the distal pocket. The amide and phenol side chains normally cause low rates of O2 dissociation and ultra-high O2 affinity by forming strong hydrogen bonds with bound ligands. Cerebratulus hemoglobin, however, has a moderate O2 affinity, due to the presence of a third polar amino-acid in its active site, ThrE11, which inhibits hydrogen bonding to bound oxygen by the B10 tyrosine side chain.  相似文献   

11.
Truncated hemoglobins (trHbs) are heme proteins present in bacteria, unicellular eukaryotes, and higher plants. Their tertiary structure consists in a 2‐over‐2 helical sandwich, which display typically an inner tunnel/cavity system for ligand migration and/or storage. The microorganism Bacillus subtilis contains a peculiar trHb, which does not show an evident tunnel/cavity system connecting the protein active site with the solvent, and exhibits anyway a very high oxygen association rate. Moreover, resonant Raman results of CO bound protein, showed that a complex hydrogen bond network exists in the distal cavity, making it difficult to assign unambiguously the residues involved in the stabilization of the bound ligand. To understand these experimental results with atomistic detail, we performed classical molecular dynamics simulations of the oxy, carboxy, and deoxy proteins. The free energy profiles for ligand migration suggest that there is a key residue, GlnE11, that presents an alternate conformation, in which a wide ligand migration tunnel is formed, consistently with the kinetic data. This tunnel is topologically related to the one found in group I trHbs. On the other hand, the results for the CO and O2 bound protein show that GlnE11 is directly involved in the stabilization of the cordinated ligand, playing a similar role as TyrB10 and TrpG8 in other trHbs. Our results not only reconcile the structural data with the kinetic information, but also provide additional insight into the general behaviour of trHbs. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Tyr or their corresponding 3,5-diiodo derivatives) in this region demonstrates a wide divergence in the acceptance both of configurational change (with [D-TyrB24,PheB26]insulin and [D-TyrB25,PheB26]insulin exhibiting 160 and 0.1% of the receptor binding potency of insulin, respectively) and of detailed side chain structure (with [TyrB24,PheB26]insulin and [TyrB25,PheB26]insulin exhibiting 2 and 80% of the receptor binding potency of insulin, respectively). Additional experiments addressed the solvent accessibilities of the 4 tyrosine residues of insulin and the insulin analogs at selected peptide concentrations by use of analytical radioiodination. Whereas two analogs ([TyrB25,PheB26]insulin and [D-TyrB24,PheB26]insulin) were found to undergo self aggregation, no strict correlation was found between the ability of an analog to aggregate and its potency for interaction with the insulin receptor. Related findings are discussed in terms of the interplay between side chain and main chain structure in the COOH-terminal domain of the insulin B-chain and the structural attributes of insulin that determine the affinity of insulin-receptor interactions.  相似文献   

13.
The monomeric hemoglobin of the nemertean worm Cerebratulus lacteus functions as an oxygen storage protein to maintain neural activity under hypoxic conditions. It shares a large, apolar matrix tunnel with other small hemoglobins, which has been implicated as a potential ligand migration pathway. Here we explore ligand migration and binding within the distal heme pocket, to which the tunnel provides access to ligands from the outside. FTIR/TDS experiments performed at cryogenic temperatures reveal the presence of three transient ligand docking sites within the distal pocket, the primary docking site B on top of pyrrole C and secondary sites C and D. Site C is assigned to a cavity adjacent to the distal portion of the heme pocket, surrounded by the B and E helices. It has an opening to the apolar tunnel and is expected to be on the pathway for ligand entry and exit, whereas site D, circumscribed by TyrB10, GlnE7, and the CD corner, most likely is located on a side pathway of ligand migration. Flash photolysis experiments at ambient temperatures indicate that the rate-limiting step for ligand binding to CerHb is migration through the apolar channel to site C. Movement from C to B and iron-ligand bond formation involve low energy barriers and thus are very rapid processes in the wt protein.  相似文献   

14.
Milani M  Pesce A  Ouellet H  Guertin M  Bolognesi M 《IUBMB life》2003,55(10-11):623-627
Truncated hemoglobins (trHbs) build a separate subfamily within the hemoglobin superfamily; they are scarcely related by sequence similarity to (non-)vertebrate hemoglobins, displaying amino acid sequences in the 115-130 residue range. The trHb tertiary structure is based on a 2-on-2 alpha-helical sandwich, which hosts a unique hydrophobic cavity/tunnel system, traversing the protein matrix, from the molecular surface to the heme distal site. Such a protein matrix system may provide a path for diffusion of ligands to the heme. In Mycobacterium tuberculosis trHbN the heme-bound oxygen molecule is part of an extended hydrogen bond network including the heme distal residues TyrB10 and GlnE11. In vitro experiments have shown that M. tuberculosis trHbN supports efficiently nitric oxide dioxygenation, yielding nitrate. Such a reaction would provide a defense barrier against the nitrosative stress raised by host macrophages during lung infection. It is proposed that the whole protein architecture, the heme distal site hydrogen bonded network, and the unique protein matrix tunnel, are optimally designed to support the pseudo-catalytic role of trHbN in converting the reactive NO species into the harmless NO3-.  相似文献   

15.
Small hemoproteins displaying amino acid sequences 20-40 residues shorter than (non-)vertebrate hemoglobins (Hbs) have recently been identified in several pathogenic and non-pathogenic unicellular organisms, and named 'truncated hemoglobins' (trHbs). They have been proposed to be involved not only in oxygen transport but also in other biological functions, such as protection against reactive nitrogen species, photosynthesis or to act as terminal oxidases. Crystal structures of trHbs from the ciliated protozoan Paramecium caudatum and the green unicellular alga Chlamydomonas eugametos show that the tertiary structure of both proteins is based on a 'two-over-two' alpha-helical sandwich, reflecting an unprecedented editing of the classical 'three-over-three' alpha-helical globin fold. Based on specific Gly-Gly motifs the tertiary structure accommodates the deletion of the N-terminal A-helix and replacement of the crucial heme-binding F-helix with an extended polypeptide loop. Additionally, concerted structural modifications allow burying of the heme group and define the distal site, which hosts a TyrB10, GlnE7 residue pair. A set of structural and amino acid sequence consensus rules for stabilizing the fold and the bound heme in the trHbs homology subfamily is deduced.  相似文献   

16.
HemAT from Bacillus subtilis (HemAT-Bs) is a heme-based O2 sensor protein that acts as a signal transducer responsible for aerotaxis. HemAT-Bs discriminates its physiological effector (O2) from other gas molecules (CO and NO), although all of them bind to a heme. To monitor the conformational changes in the protein moiety upon binding of different ligands, we have investigated ultraviolet resonance Raman (UVRR) spectra of the ligand-free and O2-, CO-, and NO-bound forms of full-length HemAT-Bs and several mutants (Y70F, H86A, T95A, and Y133F) and found that Tyr70 in the heme distal side and Tyr133 and Trp132 from the G-helix in the heme proximal side undergo environmental changes upon ligand binding. In addition, the UVRR results confirmed our previous model, which suggested that Thr95 forms a hydrogen bond with heme-bound O2, but Tyr70 does not. It is deduced from this study that hydrogen bonds between Thr95 and heme-bound O2 and between His86 and heme 6-propionate communicate the heme structural changes to the protein moiety upon O2 binding but not upon CO and NO binding. Accordingly, the present UVRR results suggest that O2 binding to heme causes displacement of the G-helix, which would be important for transduction of the conformational changes from the sensor domain to the signaling domain.  相似文献   

17.
Lucina pectinata ctenidia harbor three heme proteins: sulfide-reactive hemoglobin I (HbI(Lp)) and the oxygen transporting hemoglobins II and III (HbII(Lp) and HbIII(Lp)) that remain unaffected by the presence of H(2)S. The mechanisms used by these three proteins for their function, including ligand control, remain unknown. The crystal structure of oxygen-bound HbII(Lp) shows a dimeric oxyHbII(Lp) where oxygen is tightly anchored to the heme through hydrogen bonds with Tyr(30)(B10) and Gln(65)(E7). The heme group is buried farther within HbII(Lp) than in HbI(Lp). The proximal His(97)(F8) is hydrogen bonded to a water molecule, which interacts electrostatically with a propionate group, resulting in a Fe-His vibration at 211 cm(-1). The combined effects of the HbII(Lp) small heme pocket, the hydrogen bonding network, the His(97) trans-effect, and the orientation of the oxygen molecule confer stability to the oxy-HbII(Lp) complex. Oxidation of HbI(Lp) Phe(B10) --> Tyr and HbII(Lp) only occurs when the pH is decreased from pH 7.5 to 5.0. Structural and resonance Raman spectroscopy studies suggest that HbII(Lp) oxygen binding and transport to the host bacteria may be regulated by the dynamic displacements of the Gln(65)(E7) and Tyr(30)(B10) pair toward the heme to protect it from changes in the heme oxidation state from Fe(II) to Fe(III).  相似文献   

18.
Two heme propionate side chains, which are attached at the 6 and 7 positions of the heme framework, are linked with Arg45 and Ser92, respectively, in sperm whale myoglobin. To evaluate the role of each propionate, two kinds of one-legged hemins, 6-depropionated and 7-depropionated protohemins, were prepared and inserted into the apomyoglobin to yield two reconstituted proteins. Structural data of the reconstituted myoglobins were obtained via an X-ray crystallographic analysis at a resolution of 1.1-1.4 A and resonance Raman spectroscopy. It was found that the lack of the 6-propionate reduces the number of hydrogen bonds in the distal site and clearly changes the position of the Arg45 residue with the disrupting Arg45-Asp60 interaction. In contrast, the removal of the 7-propionate does not cause a significant structural change in the residues of the distal and proximal sites. However, the resonance Raman studies suggested that the coordination bond strength of the His93-Fe bond for the protein with the 7-depropionated protoheme slightly increases compared to that for the protein with the native heme. The O2 and CO ligand binding studies for the reconstituted proteins with the one-legged hemes provide an important insight into the functional role of each propionate. The lack of the 6-propionate accelerates the O2 dissociation by ca. 3-fold compared to those of the other reconstituted and native proteins. The lack of the 7-propionate enhances the CO affinity by 2-fold compared to that of the protein with the native heme. These results indicate that the 6-propionate clearly contributes to the stabilization of the bound O2, whereas the 7-propionate plays an important role in the regulation of the Fe-His bond.  相似文献   

19.
HasASM, a hemophore secreted by the Gram-negative bacteria Serratia marcescens, extracts heme from host hemoproteins and shuttles it to HasRSM, a specific hemophore outer membrane receptor. Heme iron in HasASM is in a six-coordinate ferric state. It is linked to the protein by the heretofore uncommon axial ligand set, His32 and Tyr75. A third residue of the heme pocket, His83, plays a crucial role in heme ligation through hydrogen bonding to Tyr75. The vibrational frequencies of coordinated carbon monoxide constitute a sensitive probe of trans ligand field, FeCO structure, and electrostatic landscape of the distal heme pockets of heme proteins. In this study, carbonyl complexes of wild-type (WT) HasASM and its heme pocket mutants His32Ala, Tyr75Ala, and His83Ala were characterized by resonance Raman spectroscopy. The CO complexes of WT HasASM, HasASM(His32Ala), and HasASM(His83Ala) exhibit similar spectral features and fall above the line that correlates nuFe-CO and nuC-O for proteins having a proximal imidazole ligand. This suggests that the proximal ligand field in these CO adducts is weaker than that for heme-CO proteins bearing a histidine axial ligand. In contrast, the CO complex of HasASM(Tyr75Ala) has resonance Raman signatures consistent with ImH-Fe-CO ligation. These results reveal that in WT HasASM, the axial ImH side chain of His32 is displaced by CO. This is in contrast to other heme proteins known to have the His/Tyr axial ligand set, wherein the phenolic side chain of the Tyr ligand dissociates upon CO addition. The displacement of His32 and its stabilization in an unbound state is postulated to be relevant to heme uptake and/or release.  相似文献   

20.
The sulfite dehydrogenase from Starkeya novella is the only known sulfite-oxidizing enzyme that forms a permanent heterodimeric complex between a molybdenum and a heme c-containing subunit and can be crystallized in an electron transfer competent conformation. Tyr236 is a highly conserved active site residue in sulfite oxidoreductases and has been shown to interact with a nearby arginine and a molybdenum-oxo ligand that is involved in catalysis. We have created a Tyr236 to Phe substitution in the SorAB sulfite dehydrogenase. The purified SDH(Y236F) protein has been characterized in terms of activity, structure, intramolecular electron transfer, and EPR properties. The substituted protein exhibited reduced turnover rates and substrate affinity as well as an altered reactivity toward molecular oxygen as an electron acceptor. Following reduction by sulfite and unlike SDH(WT), the substituted enzyme was reoxidized quickly in the presence of molecular oxygen, a process reminiscent of the reactions of the sulfite oxidases. SDH(Y236F) also exhibited the pH-dependent CW-EPR signals that are typically observed in vertebrate sulfite oxidases, allowing a direct link of CW-EPR properties to changes caused by a single-amino acid substitution. No quantifiable electron transfer was seen in laser flash photolysis experiments with SDH(Y236F). The crystal structure of SDH(Y236F) clearly shows that as a result of the substitution the hydrogen bonding network surrounding the active site is disturbed, resulting in an increased mobility of the nearby arginine. These disruptions underline the importance of Tyr236 for the integrity of the substrate binding site and the optimal alignment of Arg55, which appears to be necessary for efficient electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号