首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herdendorf TJ  Miziorko HM 《Biochemistry》2006,45(10):3235-3242
Phosphomevalonate kinase (PMK) catalyzes a key step in isoprenoid/sterol biosynthesis, converting mevalonate 5-phosphate and ATP to mevalonate 5-diphosphate and ADP. To expedite functional and structural study of this enzyme, an expression plasmid encoding His-tagged human PMK has been constructed and recombinant enzyme isolated in an active, stable form. PMK catalyzes a reversible reaction; kinetic constants of human PMK have been determined for both forward (formation of mevalonate 5-diphosphate) and reverse (formation of mevalonate 5-phosphate) reactions. Animal and invertebrate PMKs are not orthologous to plant, fungal, or bacterial PMKs, limiting the information available from sequence alignment analysis. A homology model for the structure of human PMK has been generated. The model conforms to a nucleoside monophosphate kinase family fold. This result, together with sequence comparisons of animal and invertebrate PMKs, suggests an N-terminal basic residue rich sequence as a possible "Walker A" ATP binding motif. The functions of four basic (K17, R18, K19, K22) residues and one acidic (D23) residue in the conserved sequence have been tested by mutagenesis and characterization of isolated mutant proteins. Substrate K(m) values for K17M, R18Q, K19M, and D23N have been measured for forward and reverse reactions; in comparison with wild-type PMK values, only modest (<12-fold) changes are observed. In contrast, R18Q exhibits a V(max) decrease of 100/300-fold (forward/reverse reaction). K22M activity is too low for measurement at nonsaturating substrate concentration; specific activity is decreased by >10000-fold in both forward/reverse reactions, suggesting an active site location and an important role in phosphoryl transfer.  相似文献   

2.
Site-directed mutagenesis studies on conserved amino acid residues within motifs H1, H1a, H2 and H3 of the hexameric replicative helicase DnaB from Bacillus stearothermophilus revealed specific functions associated with these residues. In particular, residues that coordinate a bound Mg2+ in the active site (T217 and D320) are important for the function of the enzyme but are not required for the formation of stable hexamers. A conserved glutamic acid (E241) in motif H1a is likely to be involved in the activation of a water molecule for in line attack on the γ-phosphate of the bound nucleotide during catalysis. A conserved glutamine (Q362) in motif H3 acts as a γ-phosphate sensor and mediates the conformational coupling of nucleotide- and DNA-binding sites. The nature of the residue at this position is also important for the primase-mediated activation of DnaB, suggesting that primase uses the same conformational coupling pathway to induce its stimulatory effect on the activity of DnaB. Together, these mutations reveal a conservation of many aspects of biochemical activity in the active sites of monomeric and hexameric helicases.  相似文献   

3.
WecA, MraY and WbcO are conserved members of the polyprenol phosphate:N-acetylhexosamine-1-phosphate transferase family involved in the assembly of bacterial cell walls, and catalyze reactions involving a membrane-associated polyprenol phosphate acceptor substrate and a cytoplasmically located UDP-D-amino sugar donor. MraY, WbcO and WecA purportedly utilize different UDP-sugars, although the molecular basis of this specificity is largely unknown. However, domain variations involved in specificity are predicted to occur on the cytoplasmic side of the membrane, adjacent to conserved domains involved in the mechanistic activity, and with access to the cytoplasmically located sugar nucleotides. Conserved C-terminal domains have been identified that satisfy these criteria. Topological analyses indicate that they form the highly basic, fifth cytoplasmic loop between transmembrane regions IX and X. Four diverse loops are apparent, for MraY, WecA, WbcO and RgpG, that uniquely characterize these sub-groups of the transferase family, and a correlation is evident with the known or implied UDP-sugar specificity.  相似文献   

4.
Price NP  Momany FA 《Glycobiology》2005,15(9):29R-42R
Protein N-glycosylation in eukaryotes and peptidoglycan biosynthesis in bacteria are both initiated by the transfer of a D-N-acetylhexosamine 1-phosphate to a membrane-bound polyprenol phosphate. These reactions are catalyzed by a family of transmembrane proteins known as the UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-phosphate transferases. The sole eukaryotic member of this family, the d-N-acetylglucosamine 1-phosphate transferase (GPT), is specific for UDP-GlcNAc as the donor substrate and uses dolichol phosphate as the membrane-bound acceptor. The bacterial translocases, MraY, WecA, and WbpL, utilize undecaprenol phosphate as the acceptor substrate, but differ in their specificity for the UDP-sugar donor substrate. The structural basis of this sugar nucleotide specificity is uncertain. However, potential carbohydrate recognition (CR) domains have been identified within the C-terminal cytoplasmic loops of MraY, WecA, and WbpL that are highly conserved in family members with the same UDP-N-acetylhexosamine specificity. This review focuses on the catalytic mechanism and substrate specificity of these bacterial UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-P transferases and may provide insights for the development of selective inhibitors of cell wall biosynthesis.  相似文献   

5.
A computer-based analysis of hydropathy and surface probability of representative members of each class of the Cry family of proteins was performed. A highly conserved hydrophobic motif within the previously described block, D2, is present not only in lepidopteran toxin genes but also in toxins active against diptera and coleoptera. An interesting feature of this hydrophobic motif is the presence of an aspartic residue (highly hydrophilic) in its middle part. Comparison with the amino acid sequence from diphtheria toxin showed that it also contains a hydrophobic motif similar to the one present in the Bacillus thuringiensis toxins. It also contains an aspartic residue in the middle part and some speculations are presented on the function of this specific region with regard to the toxic mechanism of action.  相似文献   

6.
WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.  相似文献   

7.
Crystal structure of a phospholipase D family member   总被引:7,自引:0,他引:7  
The first crystal structure of a phospholipase D (PLD) family member has been determined at 2.0 A resolution. The PLD superfamily is defined by a common sequence motif, HxK(x)4D(x)6GSxN, and includes enzymes involved in signal transduction, lipid biosynthesis, endonucleases and open reading frames in pathogenic viruses and bacteria. The crystal structure suggests that residues from two sequence motifs form a single active site. A histidine residue from one motif acts as a nucleophile in the catalytic mechanism, forming a phosphoenzyme intermediate, whereas a histidine residue from the other motif appears to function as a general acid in the cleavage of the phosphodiester bond. The structure suggests that the conserved lysine residues are involved in phosphate binding. Large-scale genomic sequencing revealed that there are many PLD family members. Our results suggest that all of these proteins may possess a common structure and catalytic mechanism.  相似文献   

8.
Glucosylceramide synthase (GCS) transfers glucose from UDP-Glc to ceramide, catalyzing the first glycosylation step in the formation of higher order glycosphingolipids. The amino acid sequence of GCS was reported to be dissimilar from other proteins, with no identifiable functional domains. We previously identified His-193 of rat GCS as an important residue in UDP-Glc and GCS inhibitor binding; however, little else is known about the GCS active site. Here, we identify key residues of the GCS active site by performing biochemical and site-directed mutagenesis studies of rat GCS expressed in bacteria. First, we found that Cys-207 was the primary residue involved in GCS N-ethylmaleimide sensitivity. Next, we showed by multiple alignment that the region of GCS flanking His-193 and Cys-207 (amino acids 89-278) contains a D1,D2,D3,(Q/R)XXRW motif found in the putative active site of processive beta-glycosyltransferases (e.g. cellulose, chitin, and hyaluronan synthases). Site-directed mutagenesis studies demonstrated that most of the highly conserved residues were essential for GCS activity. We also note that GCS and processive beta-glycosyltransferases are topologically similar, possessing cytosolic active sites, with putative transmembrane domains immediately N-terminal to the conserved domain. These results provide the first extensive information on the GCS active site and show that GCS and processive beta-glycosyltransferases possess a conserved substrate-binding/catalytic domain.  相似文献   

9.
The gene that encodes phospholipase D (PLD) from Streptoverticillium cinnamoneum contains three consensus regions (Region I, II and IV as shown in Fig. 1A) that are conserved among the PLD superfamily. The glycine-glycine (GG) motif in Region I and the glycine-serine (GS) motif in Region IV are also conserved in the PLD superfamily. These (GG and GS) motifs are located 7 residues downstream from each HKD motif. In an investigation of fifteen GG/GS motif mutants, generated as fusion proteins with maltose-binding protein (MBP-PLDs), three highly active mutants were identified. Three of the mutants (G215S, G216S, and G216S-S489G) contained a serine residue in the GG motif, and exhibited approximately a 9-27-fold increased transphosphatidylation activity to DPPC compared with recombinant wild type MBP-PLD. When heat stability was compared between three mutants and the recombinant wild type, only G216S-S489G showed heat labile properties. It appears that the 489th serine residue in the GS motif also contributes to the thermal stability of the enzyme. In addition, the GG/GS motif was very close to the active center residue, including two HKD motifs, as shown by computer modeling. The findings suggest that the GG/GS motif of PLD is a key motif that affects catalytic function and enzymatic stability.  相似文献   

10.
The highly conserved non-structural protein 2C of picornaviruses is involved in viral genome replication and encapsidation and in the rearrangement of intracellular structures. 2C binds RNA, has nucleoside triphosphatase activity, and shares three motifs with superfamily III helicases. Motifs "A" and "B" are involved in nucleotide triphosphate (NTP) binding and hydrolysis, whereas a function for motif "C" has not yet been demonstrated. Poliovirus RNA replication is inhibited by millimolar concentrations of guanidine hydrochloride (GdnHCl). Resistance and dependence to GdnHCl map to 2C. To characterize the nucleoside triphosphatase activity of 2C, we purified poliovirus recombinant 2C fused to glutathione S-transferase (GST-2C) from Escherichia coli. GST-2C hydrolyzed ATP with a Km of 0.7 mM. Other NTPs, including GTP, competed with ATP for binding to 2C but were poor substrates for hydrolysis. Mutation of conserved residues in motif A and B abolished ATPase activity, as did mutation of the conserved asparagine residue in motif C, an observation indicating the involvement of this motif in ATP hydrolysis. GdnHCl at millimolar concentrations inhibited ATP hydrolysis. Mutations in 2C that confer poliovirus resistant to or dependent on GdnHCl increased the tolerance to GdnHCl up to 100-fold.  相似文献   

11.
An amino acid motif was identified that consists of the sequence HisHydrHisHydrHydrHydr (Hydr--bulky hydrophobic residue) and is conserved in two vast classes of proteins, one of which is involved in initiation and termination of rolling circle DNA replication, or RCR (Rep proteins), and the other in mobilization (conjugal transfer) of plasmid DNA (Mob proteins). Based on analogies with metalloenzymes, it is hypothesized that the two conserved His residues in this motif may be involved in metal ion coordination required for the activity of the Rep and Mob proteins. Rep proteins contained two additional conserved motifs, one of which was located upstream, and the other downstream from the 'two His' motif. The C-terminal motif encompassed the Tyr residue(s) forming the covalent link with nicked DNA. Mob proteins were characterized by the opposite orientation of the conserved motifs, with the (putative) DNA-linking Tyr being located near their N-termini. Both Rep and Mob protein classes further split into several distinct families. Although it was not possible to find a motif or pattern that would be unique for the entire Rep or Mob class, unique patterns were derived for large subsets of the proteins of each class. These observations allowed the prediction of the amino acid residues involved in DNA nicking, which is required for the initiation of RCR or conjugal transfer of single-stranded (ss) DNA, in Rep and Mob proteins encoded by a number of replicons of highly diverse size, structure and origin. It is conjectured that recombination has played a major part in the dissemination of genes encoding related Rep or Mob proteins among the replicons exploiting RCR. It is speculated that the eucaryotic small ssDNA replicons encoding proteins with the conserved RCR motifs and replicating via RCR-related mechanisms, such as geminiviruses and parvoviruses, may have evolved from eubacterial replicons.  相似文献   

12.
Mucin-type O-glycosylation is initiated by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases). Based on sequence relationships with divergent proteins, the ppGaNTases can be subdivided into three putative domains: each putative domain contains a characteristic sequence motif. The 112-amino acid glycosyltransferase 1 (GT1) motif represents the first half of the catalytic unit and contains a short aspartate-any residue-histidine (DXH) or aspartate-any residue-aspartate (DXD)-like sequence. Secondary structure predictions and structural threading suggest that the GT1 motif forms a 5-stranded parallel beta-sheet flanked by 4 alpha-helices, which resembles the first domain of the lactose repressor. Four invariant carboxylates and a histidine residue are predicted to lie at the C-terminal end of three beta-strands and line the active site cleft. Site-directed mutagenesis of murine ppGaNTase-T1 reveals that conservative mutations at these 5 positions result in products with no detectable enzyme activity (D156Q, D209N, and H211D) or <1% activity (E127Q and E213Q). The second half of the catalytic unit contains a DXXXXXWGGENXE motif (positions 310-322) which is also found in beta1,4-galactosyltransferases (termed the Gal/GalNAc-T motif). Mutants of carboxylates within this motif express either no detectable activity, 1% or 2% activity (E319Q, E322Q, and D310N, respectively). Mutagenesis of highly conserved (but not invariant) carboxylates produces only modest alterations in enzyme activity. Mutations in the C-terminal 128-amino acid ricin-like lectin motif do not alter the enzyme's catalytic properties.  相似文献   

13.
The methionine salvage pathway (MSP) plays a crucial role in recycling a sulphahydryl derivative of the nucleoside. Recently, the genes and reactions in MSP from Bacillus subtilis have been identified, where 5-methylthioribose 1-phosphate isomerase (M1Pi) catalyzes a conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P). Herein, we report the crystal structures of B. subtilis M1Pi (Bs-M1Pi) in complex with its product MTRu-1-P, and a sulfate at 2.4 and 2.7 A resolution, respectively. The electron density clearly shows the presence of each compound in the active site. The structural comparison with other homologous proteins explains how the substrate uptake of Bs-M1Pi may be induced by an open/closed transition of the active site. The highly conserved residues at the active site, namely, Cys160 and Asp240 are most likely to be involved in catalysis. The structural analysis sheds light on its catalytic mechanism of M1Pi.  相似文献   

14.
The most widely distributed biosynthetic pathway to initiate phosphatidic acid formation in bacterial membrane phospholipid biosynthesis involves the conversion of acyl-acyl carrier protein to acylphosphate by PlsX and the transfer of the acyl group from acylphosphate to glycerol 3-phosphate by an integral membrane protein, PlsY. The membrane topology of Streptococcus pneumoniae PlsY was determined using the substituted cysteine accessibility method. PlsY has five membrane-spanning segments with the amino terminus and two short loops located on the external face of the membrane. Each of the three larger cytoplasmic domains contains a highly conserved sequence motif. Site-directed mutagenesis revealed that each conserved domain was critical for PlsY catalysis. Motif 1 had an essential serine and arginine residue. Motif 2 had the characteristics of a phosphate-binding loop. Mutations of the conserved glycines in motif 2 to alanines resulted in a Km defect for glycerol 3-phosphate binding leading to the conclusion that this motif corresponded to the glycerol 3-phosphate binding site. Motif 3 contained a conserved histidine and asparagine that were important for activity and a glutamate that was critical to the structural integrity of PlsY. PlsY was noncompetitively inhibited by palmitoyl-CoA. These data define the membrane architecture and the critical active site residues in the PlsY family of bacterial acyltransferases.  相似文献   

15.
Chu CH  Lai YJ  Huang H  Sun YJ 《Proteins》2008,71(1):396-406
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in the glycolysis-gluconeogenesis metabolism pathway. The Helicobacter pylori TIM gene (HpTIM) was cloned, and HpTIM was expressed and purified. The enzymatic activity of HpTIM for the substrate GAP was determined (K(m) = 3.46 +/- 0.23 mM and k(cat) = 8.8 x 10(4) min(-1)). The crystal structure of HpTIM was determined by molecular replacement at 2.3 A resolution. The overall structure of HpTIM was (beta/alpha)beta(beta/alpha)(6), which resembles the common TIM barrel fold, (beta/alpha)(8); however, a helix is missing after the second beta-strand. The conformation of loop 6 and binding of phosphate ion suggest that the determined structure of HpTIM was in the "closed" state. A highly conserved Arg-Asp salt bridge in the "DX(D/N)G" motif of most TIMs is absent in HpTIM because the sequence of this motif is "(211)SVDG(214)." To determine the significance of this salt bridge to HpTIM, four mutants, including K183S, K183A, D213Q, and D213A, were constructed and characterized. The results suggest that this conserved salt bridge is not essential for the enzymatic activity of HpTIM; however, it might contribute to the conformational stability of HpTIM.  相似文献   

16.
The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum -infected erythrocyte.  相似文献   

17.
Three cysteines in human recombinant folylpoly-gamma-glutamate synthetase (FPGS) that were reactive with iodoacetamide were located in peptides that were highly conserved across species; the functions of two of these peptides, located in the C-terminal domain, were studied by site-directed mutagenesis. When cDNAs containing mutations in each conserved ionic residue on these peptides were transfected into AUXB1 cells, which lack endogenous FPGS activity, one mutant (D335A) did not complement the auxotrophy, and another (R377A) allowed only minimal growth. FPGS activity could not be detected in insect cells expressing abundant levels of these two mutant proteins from recombinant baculoviruses nor from a virus encoding an H338A mutant FPGS. Kinetic analysis of the purified proteins demonstrated that each of these three mutants was quite different from the others. The major kinetic change detected for the H338A mutation was a 600-fold increase in the K(m) for glutamic acid. For the D335A mutation, the binding of all three substrates (aminopterin, ATP, and glutamic acid) was affected. For R377A, the K(m) for glutamic acid was increased by 1500-fold, and there was an approximately 20-fold decrease in the k(cat) of the reaction. The binding of the K(+) ion, a known activator of FPGS, was affected by the D335A and H338A mutations. We conclude that these three amino acids participate in the alignment of glutamic acid in the active site and that Arg-377 is also involved in the mechanism of the reaction.  相似文献   

18.
Neph molecules are highly conserved immunoglobulin superfamily proteins (IgSF) which are essential for multiple morphogenetic processes, including glomerular development in mammals and neuronal as well as nephrocyte development in D. melanogaster. While D. melanogaster expresses two Neph-like proteins (Kirre and IrreC/Rst), three Neph proteins (Neph1-3) are expressed in the mammalian system. However, although these molecules are highly abundant, their molecular functions are still poorly understood. Here we report on a fly system in which we overexpress and replace endogenous Neph homologs with mammalian Neph1-3 proteins to identify functional Neph protein networks required for neuronal and nephrocyte development. Misexpression of Neph1, but neither Neph2 nor Neph3, phenocopies the overexpression of endogenous Neph molecules suggesting a functional diversity of mammalian Neph family proteins. Moreover, structure-function analysis identified a conserved and specific Neph1 protein motif that appears to be required for the functional replacement of Kirre. Hereby, we establish D. melanogaster as a genetic system to specifically model molecular Neph1 functions in vivo and identify a conserved amino acid motif linking Neph1 to Drosophila Kirre function.  相似文献   

19.
The KsgA methyltransferase is universally conserved and plays a key role in regulating ribosome biogenesis. KsgA has a complex reaction mechanism, transferring a total of four methyl groups onto two separate adenosine residues, A1518 and A1519, in the small subunit rRNA. This means that the active site pocket must accept both adenosine and N(6)-methyladenosine as substrates to catalyze formation of the final product N(6),N(6)-dimethyladenosine. KsgA is related to DNA adenosine methyltransferases, which transfer only a single methyl group to their target adenosine residue. We demonstrate that part of the discrimination between mono- and dimethyltransferase activity lies in a single residue in the active site, L114; this residue is part of a conserved motif, known as motif IV, which is common to a large group of S-adenosyl-L-methionine-dependent methyltransferases. Mutation of the leucine to a proline mimics the sequence found in DNA methyltransferases. The L114P mutant of KsgA shows diminished overall activity, and its ability to methylate the N(6)-methyladenosine intermediate to produce N(6),N(6)-dimethyladenosine is impaired; this is in contrast to a second active site mutation, N113A, which diminishes activity to a level comparable to L114P without affecting the methylation of N(6)-methyladenosine. We discuss the implications of this work for understanding the mechanism of KsgA's multiple catalytic steps.  相似文献   

20.
Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号