首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past 21 years (1979–1999) we have observed temporal changes in the fish communities on a coral reef around a nuclear power plant in southern Taiwan. Data used for analyses were collected bimonthly by scuba-diving ichthyologists at four sub-tidal stations (Stations A, B, D, E). The commercial operation of the nuclear power plant was launched in the summer of 1984. During the study period the number of fish species varies, with the coefficient of variation (CV) ranging from 19.0% (Station A) to 25.2% (Station D). Nevertheless, the sequential data on number of species follow a random trend in terms of runs up and down at all four stations. This characteristic persists both before and after the initiation of power plant operation. Dendrograms drawn using UPGMA (unweighted pair-group method using arithmetic averages) on the dissimilarity coefficients between yearly fish occurrences show that the years 1980–1984 are more closely grouped than any other years. This phenomenon prevails at all stations, indicating that wide-scale change occurred between 1984 and 1985. After the power plant began operation, changes in water temperature were minute at these sub-tidal stations. Impacts from other sources such as chlorine release and fish impingement seem remote. We believe temporal variations in the studied fish communities can be better explained as arising from natural fluctuations of environmental factors as well as physical disturbance caused by typhoons. The latter factor is also thought to account for the major faunal change between 1984 and 1985.  相似文献   

2.
Considering the rapid degradation of coral reefs, it is becoming increasingly important to assess factors such as levels of intraspecific genetic diversity and degree of connectivity between populations and reefs. In this study, five DNA microsatellite markers were used to infer migration patterns and levels of genetic diversity in ten populations of the faviid coral Platygyra daedalea along the coast of East Africa. Populations from reef-slopes and offshore islands had significantly greater genetic diversity, measured as expected heterozygosity and allelic richness than those of inshore lagoonal reefs. A combination of F-statistics and individual assignment tests indicated moderate to high levels of gene flow among lagoonal populations, and less migration between lagoonal sites and the reef-slope and island sites. These results suggest that reef-slope and island reefs could be important reservoirs of genetic diversity for this coral species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.  相似文献   

4.
Aim To identify connectivity patterns among coral reefs of the Indo‐West Pacific. Projecting connectivity forward in time provides a framework for studying long‐term source–sink dynamics in the region, and makes it possible to evaluate the manner in which migration shapes population genetic structure at regional scales. This information is essential for addressing critical gaps in knowledge for conservation planning efforts in one of the most biologically diverse regions on earth. Location Coral reefs of the Indo‐West Pacific, ranging from 15° S to 30° N and 95° E to 140° E. Methods Individual‐based biophysical dispersal models were used in conjunction with matrix projection to identify the expected patterns of exchange between coral reefs over time. Results Present‐day oceanographic conditions lead to the transport of larvae from the South China Sea into the Coral Triangle region via the Sulu Sea, and from northern Papua New Guinea and the Solomon Islands via Halmahera. The directionality of the system leads to the expected accumulation of organisms from outlying areas into the Coral Triangle region over time, particularly in the vicinity of the Maluku Islands and eastern Sulawesi. Coral reefs in Papua New Guinea, the Sulu Archipelago and areas within the Philippines are expected to be areas of high diversity as well. Main conclusions Biophysical dispersal models, used in conjunction with matrix projection, provide an effective means of simulating connectivity structure across the Indo‐West Pacific and thereby evaluating the directionality of genetic diversity. Migration appears to have a significant influence on population genetic structure in the region. Based on present‐day ocean currents, coral reefs in the South China Sea, northern Papua New Guinea and the Solomon Islands are contributing to high levels of diversity in the Coral Triangle.  相似文献   

5.
Behavioural effects of infrasound on cyprinids were tested. In Lake Borrevann, Norway, acute avoidance responses, at a distance up to 10 m from a 16 Hz infrasound projector were revealed by echosounding. At 10 m distance, a coarse estimate of the stimulus level (measured as the acceleration component of the particle motions) was c. 10−3 m s−2. Habituation was not evident during these tests. Two synchronized infrasound units were also installed 6 m apart in front of a cooling water intake of a nuclear power plant on the River Meuse, Belgium. Echosounding was used to compare the number of fishes entering the intake canal during on–off infrasound sequences. Relative to off-periods, the reduction of the number of fishes entering during on-periods was >80% at a distance of 0–12 m from the units. A significant reduction of 48% was observed considering the whole width (54 m) that was monitored. Fish impingement on the mechanical screens during the study revealed that >90% of the fishes entering the intake were cyprinids.  相似文献   

6.
Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector‐transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent‐winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation‐by‐distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.  相似文献   

7.
1. In a combined field and laboratory study, seasonal relationships between water temperature and oxygen content, genetic structure (composition of MultiLocus Genotypes, MLGs) of a Daphnia assemblage (D. galeatahyalina hybrid species complex), and the physiological properties of clones of frequent MLGs were studied. In accordance with the oxygen‐limited thermal tolerance hypothesis, essential physiological variables of oxygen transport and supply were measured within the tolerable temperature range. 2. A few MLGs (types T1–T4) were frequent during early spring and late autumn at surface temperatures below 10 °C. Clones of T1–T4 showed a low tolerance towards higher temperatures (above 20 °C) and a high phenotypic plasticity under thermal acclimation in comparison to clones derived from frequent MLGs from later seasons, and stored high–medium quantities of carbohydrates at 12 and 18 °C. 3. Another MLG (T6) succeeded the MLGs T1–T4. T6 was frequent over most of the year at temperatures above 10 °C and below 20 °C. A clone derived from T6 exhibited a high tolerance towards warm temperatures and a more restricted phenotypic plasticity. It stored high–medium quantities of carbohydrates at 12, 18 and 24 °C and showed a high capacity for acclimatory adjustments based on haemoglobin expression. 4. During the summer period at temperatures ≥20 °C, the MLG T6 was found mainly near to the thermocline, where temperature and oxygen content were distinctly lower, and to a lesser extent in surface water. At the surface, another MLG (T19) was predominant during this period. A clone of this MLG showed a very high tolerance towards warm temperatures, minimal phenotypic plasticity, low carbohydrate stores and a high capacity for circulatory adjustments to improve oxygen transport at higher temperatures. 5. This study provides evidence for connections between the spatio‐temporal genetic heterogeneity of a Daphnia assemblage and the seasonal changes of water temperature and oxygen content. The data also suggest that not only the actual temperature but also the dynamics of temperature change may influence the genetic structure of Daphnia populations and assemblages.  相似文献   

8.
Theory predicts that geographic variation in traits and genes associated with climatic adaptation may be initially driven by the correlated evolution of thermal preference and thermal sensitivity. This assumes that an organism's preferred body temperature corresponds with the thermal optimum in which performance is maximized; hence, shifts in thermal preferences affect the subsequent evolution of thermal-related traits. Drosophila subobscura evolved worldwide latitudinal clines in several traits including chromosome inversion frequencies, with some polymorphic inversions being apparently associated with thermal preference and thermal tolerance. Here we show that flies carrying the warm-climate chromosome arrangement O(3+4) have higher basal protein levels of Hsp70 than their cold-climate O(st) counterparts, but this difference disappears after heat hardening. O(3+4) carriers are also more heat tolerant, although it is difficult to conclude from our results that this is causally linked to their higher basal levels of Hsp70. The observed patterns are consistent with the thermal co-adaptation hypothesis and suggest that the interplay between behaviour and physiology underlies latitudinal and seasonal shifts in inversion frequencies.  相似文献   

9.
Disturbances have a critical effect on the structure of natural communities. In this study long-term changes were examined in the reef community at Tiahura Reef, on the northern coast of Moorea, which had been subject to many and varied disturbances over the last 25 years. Tiahura Reef was subject to an outbreak of crown-of-thorns starfish (Acanthaster planci) in 1980–1981, causing significant declines in the abundance of scleractinian corals and butterflyfishes. By 2003, the abundance of corals and butterflyfishes had returned to former levels, but despite this apparent recovery, the species composition of coral communities and butterflyfish assemblages was very different from those recorded in 1979. Ongoing disturbances (including further outbreaks of crown-of-thorns starfish, cyclones, and coral bleaching events) appear to have prevented recovery of many important coral species (notably, Acropora spp.), which has had subsequent effects on the community structure of coral-feeding butterflyfishes. This study shows that recurrent disturbances may have persistent effects on the structure and dynamics of natural communities.  相似文献   

10.
11.
Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White‐nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis.  相似文献   

12.
The medaka, Oryzias latipes, like other fish, have two distinct aromatase genes, the ovarian (cyp19a1) and brain (cyp19a2) forms. We previously reported that Ad4BP/SF-1, a member of the NR5A subfamily, plays an important role in the regulation of cyp19a1 expression in medaka ovarian follicles during vitellogenesis. In the present study, we investigated whether liver receptor homologue-1 (LRH-1), another NR5A subfamily member, is involved in the regulation of cyp19a2 expression in the medaka brain. In situ hybridization analysis revealed that LRH-1 was expressed in the hypothalamus, where it colocalized with aromatase (cyp19a2). We then showed by transient transfection assays that LRH-1 was able to increase expression of a cyp19a2 reporter gene in various mammalian cell lines, and that mutation of a putative LRH-1 binding site within the cyp19a2 promoter abolished this effect. Taken together, these findings suggest that LRH-1 plays a role in regulating cyp19a2 expression in the medaka brain. This is the first to demonstrate in vitro the activation of brain aromatase by LRH-1 in the vertebrate brain.  相似文献   

13.
We examined the morphology and pigment composition of zooxanthellae in corals subjected to normal temperature (27°C) and thermal stress (32°C). We observed several normal and abnormal morphological types of zooxanthellar cells. Normal cells were intact and their chloroplasts were unbroken (healthy); abnormal cells were shrunken and had partially degraded or broken chloroplasts, or they were bleached and without chloroplasts. At 27°C, most healthy zooxanthellar cells were retained in the coral tissue, whereas shrunken zooxanthellae were expelled. Under thermal stress, the abundance of healthy zooxanthellae declined and the proportion of shrunken/abnormal cells increased in coral tissues. The rate of algal cell expulsion was reduced under thermal stress. Within the shrunken cells, we detected the presence of a chl‐like pigment that is not ordinarily found in healthy zooxanthellae. Analysis of the absorption spectrum, absorption maxima, and retention time (by HPLC) indicated that this pigment was 132, 173‐cyclopheophorbide a enol (cPPB‐aE), which is frequently found in marine and lacustrine sediments, and in protozoans that graze on phytoplankton. The production of cPPB‐aE in shrunken zooxanthellae suggests that the chls have been degraded to cPPB‐aE, a compound that is not fluorescent. The lack of a fluorescence function precludes the formation of reactive oxygen species. We therefore consider the formation of cPPB‐aE in shrunken zooxanthellae to be a mechanism for avoiding oxidative stress.  相似文献   

14.
Changes in photochemical activity induced by water deficit were investigated in Talinum triangulare, an inducible CAM plant. The aim was to analyse the interactions between C3 photosynthesis, induction and activity of CAM, photosynthetic energy regulation and the mechanisms responsible for photoprotection and photoinhibition under water stress. Gas exchange, chlorophyll a fluorescence, titratable acidity, carotenoid composition and relative contents of the PSII reaction centre protein (D1) were measured. A decrease in xylem tension (psi) from -0.14 to -0.2 MPa substantially decreased daytime net CO2 assimilation and daily carbon gain, and induced CAM, as shown by CO2 assimilation during the night and changes in titratable acidity; a further decrease in psi decreased nocturnal acid accumulation by 60%. Non-photochemical quenching of chlorophyll a fluorescence (NPQ) increased with water deficit, but decreased with a more severe drought (psi below -0.2 MPa), when CAM activity was low. NPQ was lower at 0900 h (during maximum decarboxylation rates) than at 1400 h, when malate pools were depleted. Down-regulation of PSII activity related to the rise in NPQ was indicated by a smaller quantum yield of PSII photochemistry (phiPSII) in droughted compared with watered plants. However, phiPSII was larger at 0900 h than at 1400 h. The de-epoxidation state of the xanthophyll cycle increased with drought and was linearly related to NPQ. Intrinsic quantum yield of PSII (FV/FM) measured at dusk was also lower in severely stressed plants than in controls. Under maximum photosynthetic photon flux and high decarboxylation rates of organic acids, the D1 content in leaves of droughted plants showing maximal CAM activity was identical to the controls; increased drought decreased D1 content by more than 30%. Predawn samples had D1 contents similar to leaves sampled at peak irradiance, with no signs of recovery after 12 h of darkness. It is concluded that under mild water stress, early induction of CAM, together with an increased energy dissipation by the xanthophyll cycle, prevents net degradation of D1 protein; when water deficit is more severe, CAM and xanthophyll cycle capacities for energy dissipation decline, and net degradation of D1 proceeds.  相似文献   

15.
16.
The mechanisms that determine the spatial structure of macroscopic and microbial communities and how they respond to environmental changes are central themes that have been explored in ecological research. However, little is known about the relative roles and importance of neutral and niche-related factors in the assemblage of bacterial, fungal, and plant communities. Here partial Mantel, null model, and variation partitioning analysis were used to compare mechanisms driving the beta diversity of bacteria, fungi and plant communities at the regional scale in arid and semi-arid areas. Denaturing gradient gel electrophoresis (PCR-DGGE) was used to evaluate the distribution pattern of microbial communities, and vegetation survey were conducted to evaluate the characteristics of plant communities. We found that bacterial, fungal, and plant communities were strongly influenced by niche processes at the regional scale in arid and semi-arid areas. Bacteria had a stronger habitat association, indicating community assembly is strongly affected by niche processes. Fungi, with their body size between plants and bacteria, had moderate environment correlation, and plants had less environment association than fungi or bacteria, which suggests that body size may determine the association between organism and environment. We concluded that the pivotal niche process, environmental filtering, weakened with increasing body size, and it should be considered when we evaluate the relative roles of deterministic and stochastic processes in community assemblage.  相似文献   

17.
The structure and self‐assembly of the peptide corresponding to the third transmembrane domain (TMD3) of Slc11a1 and its E139A mutant are studied in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) aqueous solution by NMR and CD experiments. Slc11a1 is an integral membrane protein with 12 putative TMDs and functions as a pH‐coupled divalent metal cation transporter. Glu139 of Slc11a1 is highly conserved within predicted TMD3 of the Slc11 protein family and function‐associated. Here, we provide the first direct experimental evidence for the structural features of two 24‐residue peptides corresponding to TMD3 of Slc11a1 and its E139A mutant in 60% HFIP‐d2 aqueous solution using CD and NMR spectroscopies. Our study shows that the membrane‐spanning peptide folds as a typical amphipathic α‐helix structure from Ile5 to Met20 with hydrophilic residues Glu12 (Glu139 in Slc11a1) and Asp19 lying on the same side of the helix. The substitution of Glu139 by an alanine residue has little effect on the structure of the peptide, but increases hydrophobicity and facilitates self‐assembly of the peptide. Although the wildtype peptide is monomeric in HFIP aqueous solution, the E139A mutant forms a dimer. The increase in hydrophobicity of the membrane‐spanning peptide and/or change in the interactions between transmembrane segments induced by E139A mutation may affect the metal ion transport of the protein. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Slc11a1 is an integral membrane protein with 12 putative transmembrane domains (TMDs) and functions as a pH‐coupled divalent metal cation transporter. The conservation of three negatively charged residues in the TMD3 of Slc11 protein family implies the important role of this domain in the function of the proteins. However, aggregation of the transmembrane peptide in micelles prevents structural study of the peptide in these membrane‐mimetic environments by NMR spectroscopy. Here, we characterized the structure, position, and assembly model of Slc11a1‐TMD3 (Lys128‐Ile151) in SDS micelles by the NMR study of its Leu‐substituted peptide. It was found that the two‐site substitutions of Ala for Leu residues at positions 136 and 140 of TMD3 disrupt the aggregation without altering the secondary structure of the peptide. The Leu‐substituted peptide folds as an α‐helix spanning from Leu133 to Gly144 and embedded in the micelles. A Leu zipper is suggested to account for the self‐assembly of the wild‐type peptide in SDS micelles. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Eight alternatively spliced isoforms of human 8‐oxoguanine DNA glycosylase (OGG1) (OGG1‐1a to ‐1c and ‐2a to ‐2e) are registered in the National Center for Biotechnology Information. OGG1(s) in mitochondria have not yet been fully characterized biochemically. In this study, we purified mitochondrial recombinant OGG1‐1b protein and compared its activity with nuclear OGG1‐1a protein. The reaction rate constant (kg) of the 7,8‐dihydro‐8‐oxoguanine (8‐oxoG) glycosylase activity of OGG1‐1b was 8‐oxoG:C >> 8‐oxoG:T >> 8‐oxoG:G > 8‐oxoG:A (7.96, 0.805, 0.070, and 0.015 min?1, respectively) and that of the N‐glycosylase/DNA lyase activity (kgl) of OGG1‐1b was 8‐oxoG:C > 8‐oxoG:T ?8‐oxoG:G >> 8‐oxoG:A (0.286, 0.079, 0.040, and negligible min?1, respectively). These reaction rate constants were similar to those of OGG1‐1a except for kgl against 8‐oxoG:A. APEX nuclease 1 was required to promote DNA strand breakage by OGG1‐1b. These results suggest that OGG1‐1b is associated with 8‐oxoG cleavage in human mitochondria and that the mechanism of this repair is similar to that of nuclear OGG1‐1a.  相似文献   

20.
Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short‐lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号