首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary We have used interspecific grafts between Xenopus borealis and Xenopus laevis to study the signalling system that produces tail mesoderm. Early gastrula ectoderm grafted into the posterior neural plate region of neurulae responds to a mesodermal inducing signal in this region and forms mainly tail somites; this signal persists until at least the early tail bud stage. Ventral ectoderm grafted into the posterior neural plate loses its competence to respond to this signal after stage 10 1/2. We have established the specification of anterior and posterior neural plate ectoderm. In ectodermal sandwiches or when grafted into unusual positions, anterior regions gave rise to mainly nervous system and posterior regions to large amounts of muscle, together with some nervous system. Thus it was impossible to assess the competence of posterior neural plate ectoderm to form further mesoderm and hence to establish if mesodermal induction continues during neurulation in unmanipulated embryos.  相似文献   

3.
The appearance and localization of N-CAM during neural induction were studied in Pleurodeles waltl embryos and compared with recent contradictory results reported in Xenopus laevis. A monoclonal antibody raised against mouse N-CAM was used. In the nervous system of Pleurodeles, it recognized two glycoproteins of 180 and 140x10(3) M(r) which are the Pleurodeles equivalent of N-CAM-180 and -140. Using this probe for immunohistochemistry and immunocytochemistry, we showed that N-CAM was already expressed in presumptive ectoderm at the early gastrula stage. In late gastrula embryos, a slight increase in staining was observed in the neurectoderm, whereas the labelling persisted in the noninduced ectoderm. When induced ectodermal cells were isolated at the late gastrula stage and cultured in vitro up to 14 days, a faint polarized labelling of cells was observed initially. During differentiation, the staining increased and became progressively restricted to differentiating neurons.  相似文献   

4.
Primitive blood cells differentiate from the ventral mesoderm blood islands in Xenopus embryos. In order to determine the tissue interactions that propagate blood formation in early embryogenesis, we used embryos that had the ventral cytoplasm removed. These embryos gastrulated normally, formed a mesodermal layer and lacked axial structures, but displayed a marked enhancement of alpha-globin expression. Early ventral markers, such as msx-1, vent-1 and vent-2 were highly expressed at the gastrula stage, while a dorsal marker, goosecoid, was diminished. Several lines of experimental evidence demonstrate the critical role of animal pole-derived ectoderm in blood cell formation: 1) Mesoderm derived from dorsal blastomeres injected with beta-galactosidase mRNA (as a lineage tracer) expressed alpha-globin when interfaced with an animal pole-derived ectodermal layer; 2) Embryos in which the animal pole tissue had been removed by dissection at the blastula stage failed to express alpha-globin; 3) Exogastrulated embryos that lacked an interaction between the mesodermal and ectodermal layers failed to form blood cells, while muscle cells were observed in these embryos. Using dominant-negative forms of the BMP-4 and ALK-4 receptors, we showed that activin and BMP-4 signaling is necessary for blood cell differentiation in ventral marginal zone explants, while FGF signaling is not essential. In ventralized embryos, inactivation of the BMP-4 signal within a localized area of the ectoderm led to suppression of globin expression in the adjacent mesoderm layer, but inactivation of the activin signal did not have this effect. These observations suggest that mesodermal cells, derived from a default pathway that is induced by the activin signal, need an additional BMP-4-dependent factor from the overlying ectoderm for further differentiation into a blood cell lineage.  相似文献   

5.
We previously showed that FGF was capable of inducing Xenopus gastrula ectoderm cells in culture to express position-specific neural markers along the anteroposterior axis in a dose-dependent manner. However, conflicting results have been obtained concerning involvement of FGF signaling in the anterior neural induction in vivo using the same dominant-negative construct of Xenopus FGF receptor type-1 (delta XFGFR-1 or XFD). We explored this issue by employing a similar construct of receptor type-4a (XFGFR-4a) in addition, since expression of XFGFR-4a was seen to peak between gastrula and neurula stages, when the neural induction and patterning take place, whereas expression of XFGFR-1 had not a distinct peak during that period. Further, these two FGFRs are most distantly related in amino acid sequence in the Xenopus FGFR family. When we injected mRNA of a dominant-negative version of XFGFR-4a (delta XFGFR-4a) into eight animal pole blastomeres at 32-cell stage, anterior defects including loss of normal structure in telencephalon and eye regions became prominent as examined morphologically or by in situ hybridization. Overexpression of delta XFGFR-1 appeared far less effective than that of delta XFGFR-4a. Requirement of FGF signaling in ectoderm for anterior neural development was further confirmed in culture: when ectoderm cells that were overexpressing delta XFGFR-4a were cocultured with intact organizer cells from either early or late gastrula embryos, expression of anterior and posterior neural markers was inhibited, respectively. We also showed that autonomous neuralization of the anterior-type observed in ectoderm cells that were subjected to prolonged dissociation was strongly suppressed by delta XFGFR-4a, but not as much by delta XFGFR-1. It is thus indicated that FGF signaling in ectoderm, mainly through XFGFR-4, is required for the anterior neural induction by organizer. We may reconcile our data to the current "neural default model," which features the central roles of BMP4 signaling in ectoderm and BMP4 antagonists from organizer, simply postulating that the neural default pathway in ectoderm includes constitutive FGF signaling step.  相似文献   

6.
The ability of a tissue to respond to induction, termed its competence, is often critical in determining both the timing of inductive interactions and the extent of induced tissue. We have examined the lens-forming competence of Xenopus embryonic ectoderm by transplanting it into the presumptive lens region of open neural plate stage embryos. We find that early gastrula ectoderm has little lens-forming competence, but instead forms neural tissue, despite its location outside the neural plate; we believe that the transplants are being neuralized by a signal originating in the host neural plate. This neural competence is not localized to a particular region within the ectoderm since both dorsal and ventral portions of early gastrula ectoderm show the same response. As ectoderm is taken from gastrulae of increasing age, its neural competence is gradually lost, while lens competence appears and then rapidly disappears during later gastrula stages. To determine whether these developmental changes in competence result from tissue interactions during gastrulation, or are due to autonomous changes within the ectoderm itself, ectoderm was removed from early gastrulae and cultured for various periods of time before transplantation. The loss of neural competence, and the gain and loss of lens competence, all occur in ectoderm cultured in vitro with approximately the same time course as seen in ectoderm in vitro. Thus, at least from the beginning of gastrulation onwards, changes in competence occur autonomously within ectoderm. We propose that there is a developmental timing mechanism in embryonic ectoderm that specifies a sequence of competences solely on the basis of the age of the ectoderm.  相似文献   

7.
We have studied the response of Xenopus blastula ectoderm to fibroblast growth factor and to lithium ion. The properties of acidic and basic FGF are very similar showing a 50% induction level at 1-2 ng ml-1 and a progressive increase of muscle formation up to concentrations of 100-200 ng ml-1. The elongation of explants also shows a dose-response relationship. The minimum contact requirement for induction of ectoderm explants is about 90 min and the stage range of ectodermal competence extends from midblastula to early gastrula, both these figures resembling those obtained in embryological experiments with vegetal tissue as the inducer. Lithium chloride concentrations which produce anteriorization of whole embryos have no effect on isolated ectoderms unless accompanied by FGF. Simultaneous treatment with FGF and Li lead to a marked enhancement of both elongation and muscle formation over that produced by FGF alone. By contrast, ventral marginal explants show increased elongation and muscle formation if treated with lithium alone suggesting that they have already received a low-dose FGF treatment within the embryo. It is concluded that endogenous FGF may be solely responsible for inducing the ventral mesoderm and that dorsalization of ventral mesoderm to the level of somitic muscle might be achieved either by a very high local concentration of FGF in the dorsal region, or by the action of a second, synergistic, agent in the dorsal region.  相似文献   

8.
Estrogen induced gene 121 (EIG121) and EIG121-like (EIG121L) are evolutionarily conserved genes. But, their function is still unknown. Here, we report the expression pattern of Xenopus EIG121-like (xEIG121L) during early development. Its expression was first detected at stage 9 after mid-blastula transition, attained its maximal level at the gastrula stage, and remained constant until the tadpole stage. Whole-mount in situ hybridization revealed that xEIG121L was expressed strongly in the ventral ectoderm at the gastrula stage, and in the anterior ectoderm surrounding the neural plate at the neurula stage. xEIG121L expression was especially high in the presumptive hatching gland and cement gland regions in the neurula. At the tailbud stage, xEIG121L expression was limited to the hatching gland; an inverted Y type staining, characteristic of the hatching gland, was observed. However, at the tadpole stage, xEIG121L was expressed broadly in the head, heart and fin.  相似文献   

9.
A homeobox sequence has been used to isolate a new Xenopus cDNA, named XIHbox6. A short probe from this gene serves as an early marker of posterior neural differentiation in the Xenopus nervous system. The gene recognized by this cDNA sequence is first transcribed at the late gastrula stage and solely in the posterior neural cells. The gene is expressed when ectodermal and mesodermal tissues of an early gastrula are placed in contact, but not by either tissue cultured on its own. However, gene expression is most easily inducible in ectoderm from the dorsal region, i.e., in ectoderm normally destined to form neural structures. This establishes the principle, in contrast to previous belief, that the induction of the embryonic nervous system involves a predisposition of the ectoderm and does not depend entirely on an interaction with inducing mesoderm.  相似文献   

10.
The DG42 gene is expressed during a short window during embryogenesis of Xenopus laevis. The mRNA for this gene can be first detected just after midblastula, peaks at late gastrula, and decays by the end of neurulation. The sequence of the DG42 cDNA and genomic DNA predicts a 70,000-Da protein that is not related to any other known protein. Antibodies prepared against portions of the DG42 open reading frame that had been expressed in bacteria detected a 70,000-Da protein in the embryo with a temporal course of appearance and decay that follows that of the RNA by several hours. Localization of the mRNA in dissected embryos and immunohistochemical detection of the protein showed that DG42 expression moves as a wave or gradient through the embryo. The RNA is first detected in the animal region of the blastula, and by early gastrula is found everywhere except in the outer layer of the dorsal blastopore lip. By midgastrula DG42 protein is present in the inner ectodermal layer and the endoderm; it disappears from dorsal ectoderm as the neural plate is induced and later decays in a dorsoventral direction. The last remnants of DG42 protein are seen in ventral regions of the gut at the tailbud stage.  相似文献   

11.
Spatial distribution of mRNAs for activin receptors and follistatin was studied by Northern blot hybridization using RNAs from different parts of dissected Xenopus embryos. mRNAs of two activin receptors (type IIA and IIB) occurred uniformly in pre-gastrular embryos, but occurred in larger amounts in ectoderm (in gastrulae), neural plate (in neurulae) and anterior (head) regions (in tailbud embryos) than in other embryonic regions. By contrast, follistatin mRNA appeared almost exclusively in the dorsal mesoderm including invaginating organizer region at the gastrula stage, in notochord and in dorsal ectoderm at the neurula stage, then in anterior part at the tailbud stage. The localized patterns of the distribution of these mRNAs may be due to the regionally different zygotic expression of genes in embryos at later stages. From the relatively widespread pattern of distribution of their mRNAs, we assume that both type IIA and type IIB activin receptors have broad functions in ectodermal and neural differentiation. On the other hand, follistatin mRNA showed quite a restricted pattern of expression, and therefore, we assume that follistatin may have functions more specifically related to the sites of expression of its mRNA. Thus, follistatin may be involved in the differentiation of notochord itself and/or directly be responsible for organizer functions such as neural induction and subsequent differentiation of induced neural tissues at the gastrula and later stages.  相似文献   

12.
Snir M  Ofir R  Elias S  Frank D 《The EMBO journal》2006,25(15):3664-3674
Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transitions. Ectopic XLPOU91 expression in Xenopus embryos inhibits FGF induction of Brachyury (Xbra), eliminating mesoderm, whereas neural induction is unaffected. XLPOU91 knockdown induces high levels of Xbra expression, with blastopore closure being delayed to later neurula stages. In morphant ectoderm explants, mesoderm responsiveness to FGF is extended from blastula to gastrula stages. The initial expression of mesoderm and endoderm markers is normal, but neural induction is abolished. Churchill (chch) and Sip1, two genes regulating neural competence, are not expressed in XLPOU91 morphant embryos. Ectopic Sip1 or chch expression rescues the morphant phenotype. Thus, XLPOU91 epistatically lies upstream of chch/Sip1 gene expression, regulating the competence transition that is critical for neural induction. In the absence of XLPOU91 activity, the cues driving proper embryonic cell fates are lost.  相似文献   

13.
To obtain gene sequences controlling the early steps of amphibian neurogenesis, we have performed differential screening of a subtractive cDNA library prepared by a novel PCR-based method from a single presumptive neural plate of a Xenopus laevis late-gastrula embryo. As a result we have isolated a fragment of a novel homeobox gene (named XANF-1, for Xenopus anterior neural folds). This gene is expressed predominantly in the anterior part of the developing nervous system. Such preferential localization of XANF-1 mRNA is established from its initially homogenous distribution in ectoderm of early gastrula. This change in the expression pattern is conditioned by a differential influence of various mesoderm regions on ectoderm: anterior mesoderm activates XANF-1 expression in the overlying ectoderm, whereas posterior axial and ventral mesoderm areas inhibit it. The data obtained demonstrate for the first time that selection of genes for specific expression in the CNS of the early vertebrate embryo is affected not only by chordamesoderm (a neural inductor) but also by ventral mesoderm.  相似文献   

14.
Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.  相似文献   

15.
We have previously identified two Xenopus homologues of mammalian IQGAP, XIQGAP1 and XIQGAP2, which show high homology with human IQGAP1 and IQGAP2, respectively. In order to clarify function of the IQGAPs during development, we performed knock-down experiments on the XIQGAPs in Xenopus laevis embryos by microinjecting morpholino antisense oligonucleotides into blastomeres at the two-cell stage. Suppression of XIQGAP2 expression caused ectodermal lesions in the neurula stage embryos. While suppression of XIQGAP1 expression alone did not show any obvious defect in subsequent developmental processes, simultaneous knock-down of both XIQGAPs caused the ectodermal lesions during the gastrula stage. Histological studies suggested that a loss of cell adhesion in the ectodermal and mesodermal layers of the embryos caused the defect. The suppression of XIQGAP2 expression resulted in loss of actin filaments, beta-catenin, and XIQGAP1 from cell borders in the ectoderm, although it did not affect the expression levels of these proteins. Furthermore, it inhibited Ca(2+)-induced reaggregation of embryonic cells which had been dissociated in a Ca(2+)/Mg(2+)-free medium. These results strongly suggest that XIQGAP2 is crucial for cell adhesion during early development in Xenopus.  相似文献   

16.
Summary Mesoderm formation is a result of cell-cell interactions between the vegetal and animal hemisphere and is thought to be mediated by inducing peptide growth factors including members of the FGF and TGF superfamilies. Our immunochemical study analyses the distribution of FGF receptors coded by the human flg gene during embryogenesis of Xenopus laevis. Immunostaining was detected in the dorsal and ventral ectoderm and also in the marginal zone of early cleavage, blastula and gastrula stages. Signals were very strong in the mid and late blastula (stage 8 and 9) and declined slightly in the early gastrula (stage 10). A dramatic decrease was observed up to the late gastrula (stage 11+). In stage 13 embryos, immunostaining was only found in cells around the blastopore. Isolated ectoderm cultured in vitro showed a similar temporal expression and decrease of the signal as the normal embryos. These results indicate that receptor expression is independent of the interaction of the animal cells with the vegetal part of the embryo. Of interest is the fact that the signal cannot only be found at or near the cell surface but also within the cell. This suggests the presence of an intracellular isoform of the receptor resulting from the endogenous expression of splice variants and the internalization of transmembrane receptor. Taken together our results suggest that the loss of competence (for bFGF around stage 10) is not directly correlated with the presence of receptors. The possible roles of heparan sulphate glucosaminoglycans (low affinity receptors) and control mechanisms in the intracellular signalling pathway downstream of the receptor level should be taken into consideration.  相似文献   

17.
In Xenopus, ectodermal patterning depends on a mediolateral gradient of BMP signaling, higher in the epidermis and lower in the neuroectoderm. Neural crest cells are specified at the border between the neural plate and the epidermis, at intermediate levels of BMP signaling. We recently described a novel secreted protein, Tsukushi (TSK), which works as a BMP antagonist during chick gastrulation. Here, we report on the Xenopus TSK gene (X-TSK), and show that it is involved in neural crest specification. X-TSK expression accumulates after gastrulation at the anterior-lateral edges of the neural plate, including the presumptive neural crest region. In gain-of-function experiments, X-TSK can strongly enhance neural crest specification by the dorsolateral mesoderm or X-Wnt8 in ectodermal explants, while the electroporation of X-TSK mRNA in the lateral ectoderm of embryos after gastrulation can induce the expression of neural crest markers in vivo. By contrast, depletion of X-TSK in explants or embryos impairs neural crest specification. Similarly to its chick homolog, X-TSK works as a BMP antagonist by direct binding to BMP4. However, X-TSK can also indirectly regulate BMP4 mRNA expression at the neural plate border via modulation of the Delta-Notch signaling pathway. We show that X-TSK directly binds to the extracellular region of X-delta-1, and modulates Delta-dependent Notch activity. We propose that X-TSK plays a key role in neural crest formation by directly regulating BMP and Delta activities at the boundary between the neural and the non-neural ectoderm.  相似文献   

18.
Three members of the vertebrate Distal-less gene family, Dlx3, 5 and 6, are transcribed in early gastrula embryos of Xenopus laevis. This expression is confined to ectoderm and is excluded from the presumptive neural plate region. Expression of all three genes is dependent upon BMP signaling, with significant differences in how the three genes respond to the BMP antagonist chordin. This correlates with the different expression domain boundaries in vivo for Dlx3 compared to Dlx5 and 6, suggesting that BMP signal attenuation could be the primary factor in determining these different patterns in the gastrula ectoderm.  相似文献   

19.
Neural induction and patterning in vertebrates are regulated during early development by several morphogens, such as bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Ventral ectoderm differentiates into epidermis in response to BMPs, whereas BMP signaling is tightly inhibited in the dorsal ectoderm which develops into neural tissues. Here, we show that Cdc2-like kinase 2 (Clk2) promotes early neural development and inhibits epidermis differentiation in Xenopus embryos. clk2 is specifically expressed in neural tissues along the anterior-posterior axis during early Xenopus embryogenesis. When overexpressed in ectodermal explants, Clk2 induces the expression of both anterior and posterior neural marker genes. In agreement with this observation, overexpression of Clk2 in whole embryos expands the neural plate at the expense of epidermal ectoderm. Interestingly, the neural-inducing activity of Clk2 is increased following BMP inhibition and activation of the FGF signaling pathway in ectodermal explants. Clk2 also downregulates the level of p-Smad1/5/8 in cooperation with BMP inhibition, in addition to increasing the level of activated MAPK together with FGF. These results suggest that Clk2 plays a role in early neural development of Xenopus possibly via modulation of morphogen signals such as the BMP and FGF pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号