首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histone variant H2AZ marks nucleosomes flanking the promoters of most genes of budding yeast. The incorporation of H2AZ into chromatin is dependent on the SWR1 complex, which catalyses the replacement of conventional histone H2A with H2AZ. In cells, the pool of unincorporated histone H2AZ has previously been found in association with Nap1, a chaperone for conventional histone H2A-H2B. Here, we report the discovery of Chz1, a histone chaperone that has preference for H2AZ and can also deliver a source of the histone variant for SWR1-dependent histone replacement. Bacterially expressed Chz1 forms a heterotrimer with H2AZ-H2B, stabilizing the association of the histone dimer. We have identified a conserved motif important for histone variant recognition within the H2AZ-interacting domain of Chz1. The presence of this motif in other metazoan proteins suggests that H2AZ-specific chaperones may be widely conserved.  相似文献   

2.
3.
The genome of eukaryotic cells is packed into a compact structure called chromatin that consists of DNA as well as histone and non-histone proteins. Histone chaperones associate with histone proteins and play important roles in the assembly of chromatin structure and transport of histones in the cell. The recently discovered histone chaperone Chz1 associates with the variant histone H2A.Z of budding yeast and plays a critical role in the exchange of the canonical histone pair H2A-H2B for the variant H2A.Z-H2B. Here, we present an NMR approach that provides accurate estimates for the rates of association and dissociation of Chz1 and H2A.Z-H2B. The methodology exploits the fact that in a 1:1 mixture of Chz1 and H2A.Z-H2B, the small amounts of unbound proteins that are invisible in spectra produce line broadening of signals from the complex that can be quantified in terms of the thermodynamics and kinetics of the exchange process. The dissociation rate constant measured, 22 ± 2 s− 1, provides an upper bound for the rate of transfer of H2A.Z-H2B to the chromatin remodeling complex, and the faster-than-diffusion association rate, 108 ± 107 M− 1 s− 1, establishes the importance of attractive electrostatic interactions that form the chaperone-histone complex.  相似文献   

4.
Recent work has revealed that the association of a disordered region of a protein with a folded binding partner can occur as rapidly as association between two folded proteins. This is the case for the phosphatase calcineurin (CaN) and its association with its activator calmodulin. Calmodulin binds to the intrinsically disordered regulatory domain of CaN. Previous studies have shown that electrostatic steering can accelerate the binding of folded proteins with disordered ligands. Given that electrostatic forces are strong determinants of disordered protein ensembles, the relationship between electrostatics, conformational ensembles, and quaternary interactions is unclear. Here, we employ experimental approaches to explore the impact of electrostatic interactions on the association of calmodulin with the disordered regulatory region of CaN. We find that estimated association rate constants of calmodulin with our chosen calmodulin-substrates are within the diffusion-limited regime. The association rates are dependent on the ionic strength, indicating that favorable electrostatic forces increase the rate of association. Further, we show that charged amino acids outside the calmodulin-binding site modulate the binding rate. Conformational ensembles obtained from computer simulations suggest that electrostatic interactions within the regulatory domain might bias the conformational ensemble such that the calmodulin binding region is readily accessible. Given the prevalence of charged residues in disordered protein chains, our findings are likely relevant to many protein-protein interactions.  相似文献   

5.
6.
7.
8.
《Molecular cell》2014,53(3):498-505
  1. Download : Download high-res image (93KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
The majority of known nuclear proteins are highly mobile. The molecular mechanisms by which they accumulate inside stable compartments that are not separated from the nucleoplasm by membranes are obscure. The compartmental retention of some proteins is associated with their biological function; however, some protein interactions within distinct nuclear structures may be non-specific. The non-specific retention may lead to the accumulation of proteins in distinct structural domains, even if the protein does not function inside this domain. In this study, we have shown that histone H2B-EGFP initially accumulated in the nucleolus after ectopic expression, and then gradually incorporated into the chromatin to leave only a small amount of nucleolus-bound histone that was revealed by removing chromatin-bound proteins with DNase I treatment. Nucleolar histone H2B had several characteristics: (i) it preferentially bound to granular component of the nucleolus and interacted with RNA or RNA-containing nucleolar components; (ii) it freely exchanged between the nucleolus and nucleoplasm; (iii) it associated with the nuclear matrix; and (iv) it bound to interphase prenuclear bodies that formed after hypotonic treatment. The region in histone H2B that acts as a nucleolar localization/retention signal (NoRS) was identified. This signal overlapped with a nuclear localization signal (NLS), which appears to be the primary function of this region. The NoRS activity of this region was non-specific, but the molecular mechanism was probably similar to the NoRSs of other nucleolar proteins. All known NoRSs are enriched with basic amino acids, and we demonstrated that positively charged motifs (nona-arginine (R9) and nona-lysine (K9)) were sufficient for the nucleolar accumulation of EGFP. Also, the correlation between measured NoRS activity and the predicted charge was observed. Thus, NoRSs appear to achieve their function through electrostatic interactions with the negatively charged components of the nucleolus. Though these interactions are non-specific, the functionally unrelated retention of a protein can increase the probability of its interaction with specific and functionally related binding sites.  相似文献   

11.
12.
Oncohistone mutations are crucial drivers for tumorigenesis, but how a living organism governs the loss-of-function oncohistone remains unclear. We generated a histone H2B triple knockout (3KO) strain in Caenorhabditis elegans, which decreased the embryonic H2B, disrupted cell divisions, and caused animal sterility. By performing genetic suppressor screens, we uncovered that mutations defective in the histone H3-H4 chaperone UNC-85 restored H2B 3KO fertility by decreasing chromatin H3-H4 levels. RNA interference of other H3-H4 chaperones or H3 or H4 histones also rescued H2B 3KO sterility. We showed that blocking H3-H4 chaperones recovered cell division in C. elegans carrying the oncohistone H2BE74K mutation that distorts the H2B-H4 interface and induces nucleosome instability. Our results indicate that reducing chromatin H3-H4 rescues the dysfunctional H2B in vivo and suggest that inhibiting H3-H4 chaperones may provide an effective therapeutic strategy for treating cancers resulting from loss-of-function H2B oncohistone.  相似文献   

13.
Isolation of yeast histone genes H2A and H2B   总被引:71,自引:0,他引:71  
L Hereford  K Fahrner  J Woolford  M Rosbash  D B Kaback 《Cell》1979,18(4):1261-1271
Analysis of cloned sequences for yeast histone genes H2A and H2B reveals that there are only two copies of this pair of genes within the haploid yeast genome. Within each copy, the genes for H2A and H2B are separated by approximately 700 bp of spacer DNA. The two copies are separated from one another in the yeast genome by a minimum distance of 35-60 kb. Sequence homology between the two copies is restricted to the genes for H2A and H2B; the spacer DNA between the genes is nonhomologous. In both copies, the genes for H2A and H2B are divergently transcribed. In addition, both plasmids code for other nonhistone proteins. Sequences coding for histones H3 and H4 have not been detected in the immediate vicinity of the genes for H2A and H2B.  相似文献   

14.
15.
Chromatin condensation paralleled by DNA fragmentation is one of the most important nuclear events occurring during apoptosis. Histone modifications, and in particular phosphorylation, have been suggested to affect chromatin function and structure during both cell cycle and cell death. We report here that phosphate incorporation into all H1 subtypes decreased rapidly after induction of apoptosis, evidently causing a strong reduction in phosphorylated forms of main H1 histone subtypes. H1 dephosphorylation is accompanied by chromatin condensation preceding the onset of typical chromatin oligonucleosomal fragmentation, whereas H2A.X hyperphosphorylation is strongly correlated to apoptotic chromatin fragmentation. Using various kinase inhibitors we were able to exclude some of the possible kinases which can be involved directly or indirectly in phosphorylation of histone H2A.X. Neither DNA-dependent protein kinase, protein kinase A, protein kinase G, nor the kinases driven by the mitogen-activated protein kinase (MAP) pathway appear to be responsible for H2A.X phosphorylation. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA), however, markedly reduced the induction of apoptosis in TNFalpha-treated cells with a simultaneous change in the phosphorylation pattern of histone H2A.X. Hyperphosphorylation of H2A.X in apoptotic cells depends indirectly on activation of caspases and nuclear scaffold proteases as shown in zVAD-(OMe)-fmk- or zAPF-cmk-treated cells, whereas the dephosphorylation of H1 subtypes seems to be influenced solely by caspase inhibitors. Together, these results illustrate that H1 dephosphorylation and H2A.X hyperphosphorylation are necessary steps on the apoptotic pathway.  相似文献   

16.
Sequences and expression patterns of newly isolated human histone H2A and H2B genes and the respective proteins were compared with previously isolated human H2A and H2B genes and proteins. Altogether, 15 human H2A genes and 17 human H2B genes have been identified. 14 of these are organized as H2A/H2B gene pairs, while one H2A gene and three H2B genes are solitary genes. Two H2A genes and two H2B genes turned outto be pseudogenes. The 13 H2A genes code for at least 6 different amino acid sequences, and the 15 H2B genes encode 11 different H2B isoforms. Each H2A/H2B gene pair is controlled by a divergent promoter spanning 300 to 330 nucleotides between the coding regions of the two genes. The highly conserved divergent H2A/H2B promoters can be classified in two groups based on the patterns of consensus sequence elements. Group I promoters contain a TATA box for each gene, two Oct-1 factor binding sites, and three CCAAT boxes. Group II promoters contain the same elements as group I promoters and an additional CCAAT box, a binding motif for E2F and adjacent a highly conserved octanucleotide (CACAGCTT) that has not been described so far. Five of the 6 gene pairs and 4 solitary genes with group I promoters are localized in the large histone gene cluster at 6p21.3-6p22, and one gene pair is located at 1q21. All group II promoter associated genes are contained within the histone gene subcluster at D6S105, which is located at a distance of about 2 Mb from the major subcluster at 6p21.3-6p22 containing histone genes with group I promoters. Almost all group II H2A genes encode identical amino acid sequences, whereas group I H2A gene products vary at several positions. Using human cell lines, we have analyzed the expression patterns of functional human H2A/H2B gene pairs organized within the two histone gene clusters on the short arm of chromosome 6. The genes show varying expression patterns in different tumor cell lines.  相似文献   

17.
18.
19.
Huang Y  Liu Z 《PloS one》2010,5(11):e15375
Proteins function by interacting with other molecules, where both native and nonnative interactions play important roles. Native interactions contribute to the stability and specificity of a complex, whereas nonnative interactions mainly perturb the binding kinetics. For intrinsically disordered proteins (IDPs), which do not adopt rigid structures when being free in solution, the role of nonnative interactions may be more prominent in binding processes due to their high flexibilities. In this work, we investigated the effect of nonnative hydrophobic interactions on the coupled folding and binding processes of IDPs and its interplay with chain flexibility by conducting molecular dynamics simulations. Our results showed that the free-energy profiles became rugged, and intermediate states occurred when nonnative hydrophobic interactions were introduced. The binding rate was initially accelerated and subsequently dramatically decreased as the strength of the nonnative hydrophobic interactions increased. Both thermodynamic and kinetic analysis showed that disordered systems were more readily affected by nonnative interactions than ordered systems. Furthermore, it was demonstrated that the kinetic advantage of IDPs ("fly-casting" mechanism) was enhanced by nonnative hydrophobic interactions. The relationship between chain flexibility and protein aggregation is also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号