首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspecies transmission of the transmissible spongiform encephalopathies (TSEs), or prion diseases, can result in the adaptation and selection of TSE strains with an expanded host range and increased virulence such as in the case of bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease. To investigate TSE strain adaptation, we serially passaged a biological clone of transmissible mink encephalopathy (TME) into Syrian golden hamsters and examined the selection of distinct strain phenotypes and conformations of the disease-specific isoform of the prion protein (PrP(Sc)). The long-incubation-period drowsy (DY) TME strain was the predominate strain, based on the presence of its strain-specific PrP(Sc) following interspecies passage. Additional serial passages in hamsters resulted in the selection of the hyper (HY) TME PrP(Sc) strain-dependent conformation and its short incubation period phenotype unless the passages were performed with a low-dose inoculum (e.g., 10(-5) dilution), in which case the DY TME clinical phenotype continued to predominate. For both TME strains, the PrP(Sc) strain pattern preceded stabilization of the TME strain phenotype. These findings demonstrate that interspecies transmission of a single cloned TSE strain resulted in adaptation of at least two strain-associated PrP(Sc) conformations that underwent selection until one type of PrP(Sc) conformation and strain phenotype became predominant. To examine TME strain selection in the absence of host adaptation, hamsters were coinfected with hamster-adapted HY and DY TME. DY TME was able to interfere with the selection of the short-incubation HY TME phenotype. Coinfection could result in the DY TME phenotype and PrP(Sc) conformation on first passage, but on subsequent passages, the disease pattern converted to HY TME. These findings indicate that during TSE strain adaptation, there is selection of a strain-specific PrP(Sc) conformation that can determine the TSE strain phenotype.  相似文献   

2.
Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrP(C) into PrP(Sc) in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrP(C) may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrP(C) into PrP(Sc) from ~10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrP(Sc) by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrP(C) susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrP(Sc)in vitro.  相似文献   

3.
Prions, infectious agents causing TSEs, are composed primarily of the pathogenic form (PrP(Sc)) of the PrP(C). The susceptibility of sheep to scrapie is determined by polymorphisms in the coding region of the PRNP, mainly at codons 136, 154, and 171. The efficiency of in vitro amplification of sheep PrP(Sc) seems to be linked also to the PrP genotype. PrP(Sc) derived from sheep with V(136)R(154)Q(171)-associated genotypes can be amplified efficiently by PMCA in the presence of additional polyanion such as poly A, but there are no reports that cite ultrasensitive detection of PrP(Sc) derived from sheep of other PrP genotypes. We report here that sheep PrP(Sc) derived from ARQ and AHQ homozygotes was amplified efficiently by serial PMCA using mouse brain homogenate as PrP(C) substrate. ARQ/ARQ PrP(Sc) was detected in infected brain homogenates diluted up to 10(-10) after five rounds of amplification, and AHQ/AHQ PrP(Sc) was detected in samples diluted up to 10(-8) after four rounds of amplification. On the other hand, amplification of PrP(Sc) from VRQ/ARQ sheep seemed to be less efficient under the experimental conditions used. The interspecies PMCA developed in this study may be useful in the detailed analysis of PrP(Sc) distribution in classical scrapie-infected ARQ and AHQ homozygote sheep.  相似文献   

4.
Human CJD, endemic sheep scrapie, epidemic bovine spongiform encephalopathy (BSE), and other transmissible spongiform encephalopathies (TSEs), are caused by a group of related but molecularly uncharacterized infectious agents. The UK‐BSE agent infected many species, including humans where it causes variant CJD (vCJD). As in most viral infections, different TSE disease phenotypes are determined by both the agent strain and the host species. TSE strains are most reliably classified by incubation time and regional neuropathology in mice expressing wild‐type (wt) prion protein (PrP). We compared vCJD to other human and animal derived TSE strains in both mice and neuronal cultures expressing wt murine PrP. Primary and serial passages of the human vCJD agent, as well as the highly selected mutant 263K sheep scrapie agent, revealed profound strain‐specific characteristics were encoded by the agent, not by host PrP. Prion theory posits that PrP converts itself into the infectious agent, and thus short incubations require identical PrP sequences in the donor and recipient host. However, wt PrP mice injected with human vCJD brain homogenates showed dramatically shorter primary incubation times than mice expressing only human PrP, a finding not in accord with a PrP species barrier. All mouse passage brains showed the vCJD agent derived from a stable BSE strain. Additionally, both vCJD brain and monotypic neuronal cultures produced a diagnostic 19 kDa PrP fragment previously observed only in BSE and vCJD primate brains. Monotypic cultures can be used to identify the intrinsic, strain‐determining molecules of TSE infectious particles. J. Cell. Biochem. 106: 220–231, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.  相似文献   

6.
Prions, the infectious agents of transmissible spongiform encephalopathies, are composed primarily of a misfolded protein designated PrP(Sc). Prion-infected neurons generate PrP(Sc) from a host glycoprotein designated PrP(C) through a process of induced conformational change, but the molecular mechanism by which PrP(C) undergoes conformational change into PrP(Sc) remains unknown. We employed an in vitro PrP(Sc) amplification technique adapted from protein misfolding cyclic amplification (PMCA) to investigate the mechanism of prion-induced protein conformational change. Using this technique, PrP(Sc) from diluted scrapie-infected brain homogenate can be amplified >10-fold without sonication when mixed with normal brain homogenate under nondenaturing conditions. PrP(Sc) amplification in vitro exhibits species and strain specificity, depends on both time and temperature, only requires membrane-bound components, and does not require divalent cations. In vitro amplification of Syrian hamster Sc237 PrP(Sc) displays an optimum pH of approximately 7, whereas amplification of CD-1 mouse RML PrP(Sc) is optimized at pH approximately 6. The thiolate-specific alkylating agent N-ethylmaleimide (NEM) as well as the reversible thiol-specific blockers p-hydroxymercuribenzoic acid (PHMB) and mersalyl acid inhibited PrP(Sc) amplification in vitro, indicating that the conformational change from PrP(C) to PrP(Sc) requires a thiol-containing factor. Our data provide the first evidence that a reactive chemical group plays an essential role in the conformational change from PrP(C) to PrP(Sc).  相似文献   

7.
Chronic wasting disease (CWD), a prion disease of deer and elk, is highly prevalent in some regions of North America. The establishment of mouse-adapted CWD prions has proven difficult due to the strong species barrier between mice and deer. Here we report the efficient transmission of CWD to transgenic mice overexpressing murine PrP. All mice developed disease 500 +/- 62 days after intracerebral CWD challenge. The incubation period decreased to 228 +/- 103 days on secondary passage and to 162 +/- 6 days on tertiary passage. Mice developed very large, radially structured cerebral amyloid plaques similar to those of CWD-infected deer and elk. PrP(Sc) was detected in spleen, indicating that murine CWD was lymphotropic. PrP(Sc) glycoform profiles maintained a predominantly diglycosylated PrP pattern, as seen with CWD in deer and elk, across all passages. Therefore, all pathological, biochemical, and histological strain characteristics of CWD appear to persist upon repetitive serial passage through mice. These findings indicate that the salient strain-specific properties of CWD are encoded by agent-intrinsic components rather than by host factors.  相似文献   

8.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

9.
In this study, we established Neuro2a (N2a) neuroblastoma subclones and characterized their susceptibility to prion infection. The N2a cells were treated with brain homogenates from mice infected with mouse prion strain Chandler. Of 31 N2a subclones, 19 were susceptible to prion as those cells became positive for abnormal isoform of prion protein (PrP(Sc)) for up to 9 serial passages, and the remaining 12 subclones were classified as unsusceptible. The susceptible N2a subclones expressed cellular prion protein (PrP(C)) at levels similar to the parental N2a cells. In contrast, there was a variation in PrP(C) expression in unsusceptible N2a subclones. For example, subclone N2a-1 expressed PrP(C) at the same level as the parental N2a cells and prion-susceptible subclones, whereas subclone N2a-24 expressed much lower levels of PrP mRNA and PrP(C) than the parental N2a cells. There was no difference in the binding of PrP(Sc) to prion-susceptible and unsusceptible N2a subclones regardless of their PrP(C) expression level, suggesting that the binding of PrP(Sc) to cells is not a major determinant for prion susceptibility. Stable expression of PrP(C) did not confer susceptibility to prion in unsusceptible subclones. Furthermore, the existence of prion-unsusceptible N2a subclones that expressed PrP(C) at levels similar to prion-susceptible subclones, indicated that a host factor(s) other than PrP(C) and/or specific cellular microenvironments are required for the propagation of prion in N2a cells. The prion-susceptible and -unsusceptible N2a subclones established in this study should be useful for identifying the host factor(s) involved in the prion propagation.  相似文献   

10.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

11.
Prion protein (PrP)(Sc), the only known component of the prion, is present mostly in the brains of animals and humans affected with prion diseases. We now show that a protease-resistant PrP isoform can also be detected in the urine of hamsters, cattle, and humans suffering from transmissible spongiform encephalopathies. Most important, this PrP isoform (UPrP(Sc)) was also found in the urine of hamsters inoculated with prions long before the appearance of clinical signs. Interestingly, intracerebrally inoculation of hamsters with UPrP(Sc) did not cause clinical signs of prion disease even after 270 days, suggesting it differs in its pathogenic properties from brain PrP(Sc). We propose that the detection of UPrP(Sc) can be used to diagnose humans and animals incubating prion diseases, as well as to increase our understanding on the metabolism of PrP(Sc) in vivo.  相似文献   

12.
Two prion strains with identical incubation periods in mice exhibited distinct incubation periods and different neuropathological profiles upon serial transmission to transgenic mice expressing chimeric Syrian hamster/mouse (MH2M) prion protein (PrP) genes [Tg(MH2M) mice] and subsequent transmission to Syrian hamsters. After transmission to Syrian hamsters, the Me7 strain was indistinguishable from the previously established Syrian hamster strain Sc237, despite having been derived from an independent ancestral source. This apparent convergence suggests that prion diversity may be limited. The Me7 mouse strain could also be transmitted directly to Syrian hamsters, but when derived in this way, its properties were distinct from those of Me7 passaged through Tg(MH2M) mice. The Me7 strain did not appear permanently altered in either case, since the original incubation period could be restored by effectively reversing the series of passages. Prion diversity enciphered in the conformation of the scrapie isoform of PrP (PrP(Sc)) (G. C. Telling et al., Science 274:2079-2082, 1996) seems to be limited by the sequence of the PrP substrates serially converted into PrP(Sc), while prions are propagated through interactions between the cellular and scrapie isoforms of PrP.  相似文献   

13.
The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrP(Sc)), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrP(Sc) template. Here we report that authentic PrP(Sc) and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrP(Sc) and lack any detectable PrP(Sc) particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrP(Sc) evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrP(Sc) and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as "deformed templating" postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrP(Sc) can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.  相似文献   

14.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

15.
Propagation of the agents responsible for transmissible spongiform encephalopathies (TSEs) in cultured cells has been achieved for only a few cell lines. To establish efficient and versatile models for transmission, we developed neuroblastoma cell lines overexpressing type A mouse prion protein, MoPrP(C)-A, and then tested the susceptibility of the cells to several different mouse-adapted scrapie strains. The transfected cell clones expressed up to sixfold-higher levels of PrP(C) than the untransfected cells. Even after 30 passages, we were able to detect an abnormal proteinase K-resistant form of prion protein, PrP(Sc), in the agent-inoculated PrP-overexpressing cells, while no PrP(Sc) was detectable in the untransfected cells after 3 passages. Production of PrP(Sc) in these cells was also higher and more stable than that seen in scrapie-infected neuroblastoma cells (ScN2a). The transfected cells were susceptible to PrP(Sc)-A strains Chandler, 139A, and 22L but not to PrP(Sc)-B strains 87V and 22A. We further demonstrate the successful transmission of PrP(Sc) from infected cells to other uninfected cells. Our results corroborate the hypothesis that the successful transmission of agents ex vivo depends on both expression levels of host PrP(C) and the sequence of PrP(Sc). This new ex vivo transmission model will facilitate research into the mechanism of host-agent interactions, such as the species barrier and strain diversity, and provides a basis for the development of highly susceptible cell lines that could be used in diagnostic and therapeutic approaches to the TSEs.  相似文献   

16.
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.  相似文献   

17.
Prion diseases are characterized by high accumulation of infectious prion proteins (PrP(Sc)) in brains. PrP(Sc) are propagated by the conversion of host-encoded cellular prion proteins (PrP(C)) which are essential for developing the disease but are heterogeneously expressed in brains. The disease can be transmitted to humans and animals through blood and blood products, however, little attention has been given to molecular characterization of PrP(C) in blood cells. In this presented study, we characterized phenotypically PrP(C) of platelets (plt) and characterized the proteins regarding their glycobanding profiles by quantitative immunoblotting using a panel of monoclonal antibodies. The glycosylation patterns of plt and brain PrP(C) were compared using the ratios of di-, mono-, and non-glycosylated prions. The detergent solubility of plt and brain PrP(C) was also analyzed. The distinct banding patterns and detergent solubility of plt PrP(C) differed clearly from the glycosylation profiles and solubility characteristics of brain PrP(C). Plt PrP(C) exhibited single or only few prion protein types, whereas brain PrP(C) showed more extensive banding patterns and lower detergent solubility. Plt PrP(C) are post-translational modified differently from PrP(C) in brain. These findings suggest other or less physiological functions of plt PrP(C) than in brain.  相似文献   

18.
Previous studies using post-mortem human brain extracts demonstrated that PrP in Creutzfeldt-Jakob disease (CJD) brains is cleaved by a cellular protease to generate a C-terminal fragment, referred to as C2, which has the same molecular weight as PrP-(27-30), the protease-resistant core of PrP(Sc) (1). The role of this endoproteolytic cleavage of PrP in prion pathogenesis and the identity of the cellular protease responsible for production of the C2 cleavage product has not been explored. To address these issues we have taken a combination of pharmacological and genetic approaches using persistently infected scrapie mouse brain (SMB) cells. We confirm that production of C2 is the predominant cleavage event of PrP(Sc) in the brains of scrapie-infected mice and that SMB cells faithfully recapitulate the diverse intracellular proteolytic processing events of PrP(Sc) and PrP(C) observed in vivo. While increases in intracellular calcium (Ca(2+)) levels in prion-infected cell cultures stimulate the production of the PrP(Sc) cleavage product, pharmacological inhibitors of calpains and overexpression of the endogenous calpain inhibitor, calpastatin, prevent the production of C2. In contrast, inhibitors of lysosomal proteases, caspases, and the proteasome have no effect on C2 production in SMB cells. Calpain inhibition also prevents the accumulation of PrP(Sc) in SMB and persistently infected ScN2A cells, whereas bioassay of inhibitor-treated cell cultures demonstrates that calpain inhibition results in reduced prion titers compared with control-treated cultures assessed in parallel. Our observations suggest that calpain-mediated endoproteolytic cleavage of PrP(Sc) may be an important event in prion propagation.  相似文献   

19.
Prions are unconventional infectious agents composed exclusively of misfolded prion protein (PrP(Sc)), which transmits the disease by propagating its abnormal conformation to the cellular prion protein (PrP(C)). A key characteristic of prions is their species barrier, by which prions from one species can only infect a limited number of other species. Here, we report the generation of infectious prions by interspecies transmission of PrP(Sc) misfolding by in vitro PMCA amplification. Hamster PrP(C) misfolded by mixing with mouse PrP(Sc) generated unique prions that were infectious to wild-type hamsters, and similar results were obtained in the opposite direction. Successive rounds of PMCA amplification result in adaptation of the in vitro-produced prions, in a process reminiscent of strain stabilization observed upon serial passage in vivo. Our results indicate that PMCA is a valuable tool for the investigation of cross-species transmission and suggest that species barrier and strain generation are determined by the propagation of PrP misfolding.  相似文献   

20.
What is the nature of the transmissible agent responsible for neurodegenerative diseases such as scrapie and mad-cow disease in animals and Creutzfeldt-Jakob disease in man? There is now weighty evidence that PrP(Sc), a modified version of the ubiquitously expressed host protein PrP(C), is responsible for pathogenesis of these diseases and that conversion of PrP(C) into PrP(Sc) under the influence of PrP(Sc) is the process leading to the propagation of PrP(Sc) and disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号