首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since Darwin published the “Origin,” great progress has been made in our understanding of speciation mechanisms. The early investigations by Mayr and Dobzhansky linked Darwin's view of speciation by adaptive divergence to the evolution of reproductive isolation, and thus provided a framework for studying the origin of species. However, major controversies and questions remain, including: When is speciation nonecological? Under what conditions does geographic isolation constitute a reproductive isolating barrier? and How do we estimate the “importance” of different isolating barriers? Here, we address these questions, providing historical background and offering some new perspectives. A topic of great recent interest is the role of ecology in speciation. “Ecological speciation” is defined as the case in which divergent selection leads to reproductive isolation, with speciation under uniform selection, polyploid speciation, and speciation by genetic drift defined as “nonecological.” We review these proposed cases of nonecological speciation and conclude that speciation by uniform selection and polyploidy normally involve ecological processes. Furthermore, because selection can impart reproductive isolation both directly through traits under selection and indirectly through pleiotropy and linkage, it is much more effective in producing isolation than genetic drift. We thus argue that natural selection is a ubiquitous part of speciation, and given the many ways in which stochastic and deterministic factors may interact during divergence, we question whether the ecological speciation concept is useful. We also suggest that geographic isolation caused by adaptation to different habitats plays a major, and largely neglected, role in speciation. We thus provide a framework for incorporating geographic isolation into the biological species concept (BSC) by separating ecological from historical processes that govern species distributions, allowing for an estimate of geographic isolation based upon genetic differences between taxa. Finally, we suggest that the individual and relative contributions of all potential barriers be estimated for species pairs that have recently achieved species status under the criteria of the BSC. Only in this way will it be possible to distinguish those barriers that have actually contributed to speciation from those that have accumulated after speciation is complete. We conclude that ecological adaptation is the major driver of reproductive isolation, and that the term “biology of speciation,” as proposed by Mayr, remains an accurate and useful characterization of the diversity of speciation mechanisms.  相似文献   

2.
Recombination and the divergence of hybridizing species   总被引:10,自引:0,他引:10  
Ortíz-Barrientos D  Reiland J  Hey J  Noor MA 《Genetica》2002,116(2-3):167-178
The interplay between hybridization and recombination can have a dramatic effect on the likelihood of speciation or persistence of incompletely isolated species. Many models have suggested recombination can oppose speciation, and several recent empirical investigations suggest that reductions in recombination between various components of reproductive isolation and/or adaptation can allow species to persist in the presence of gene flow. In this article, we discuss these ideas in relation to speciation models, phylogenetic analyses, and species concepts. In particular, we revisit genetic architectures and population mechanisms that create genetic correlations and facilitate divergence in the face of gene flow. Linkage among genes contributing to adaptation or reproductive isolation due to chromosomal rearrangements as well as pleiotropy or proximity of loci can greatly increase the odds of species divergence or persistence. Finally, we recommend recombination to be a focus of inquiry when studying the origins of biological diversity.  相似文献   

3.
Mayr's best recognized scientific contributions include the biological species concept and the theory of geographic speciation. In the latter, reproductive isolation evolves as an incidental by‐product of genetic divergence between allopatric populations. Mayr noted that divergent natural selection could accelerate speciation, but also argued that gene flow so strongly retards divergence that, even with selection, non‐allopatric speciation is unlikely. However, current theory and data demonstrate that substantial divergence, and even speciation, in the face of gene flow is possible. Here, I attempt to connect some opposing views about speciation by integrating Mayr's ideas about the roles of ecology and geography in speciation with current data and theory. My central premise is that the speciation process (i.e. divergence) is often continuous, and that the opposing processes of selection and gene flow interact to determine the degree of divergence (i.e. the degree of progress towards the completion of speciation). I first establish that, in the absence of gene flow, divergent selection often promotes speciation. I then discuss how population differentiation in the face of gene flow is common when divergent selection occurs. However, such population differentiation does not always lead to the evolution of discontinuities, strong reproductive isolation, and thus speciation per se. I therefore explore the genetic and ecological circumstances that facilitate speciation in the face of gene flow. For example, particular genetic architectures or ecological niches may tip the balance between selection and gene flow strongly in favour of selection. The circumstances allowing selection to overcome gene flow to the extent that a discontinuity develops, and how often these circumstances occur, are major remaining questions in speciation research. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 26–46.  相似文献   

4.
Examination of the association between reproductive isolation and genetic divergence in a variety of organisms is essential for elucidating the mechanisms causing speciation. However, such studies are lacking for hermaphrodites. We measured premating (sexual) isolation in species pairs of the hermaphroditic land snail Albinaria and we compared it with their genetic divergence. We did not find substantial sexual isolation barriers between the species studied. The absence of strong sexual isolation between species implies its minor effect in the evolution of this genus, because distributional, population and life-history characteristics of Albinaria make mate-choice possibly redundant. Furthermore, we found disassociation between genetic divergence and sexual isolation, suggesting that they do not form necessarily a cause-effect duet. However, Albinaria voithii, the only dextral Albinaria species, shows strong sexual isolation against the other sinistral species. We discuss whether change in coiling either has triggered instantaneous speciation, or is an example of character displacement.  相似文献   

5.
There has been much debate over the origin of species diversity in biodiversity hotspots, particularly the rate of speciation over extinction and the geographic mode of speciation. Here, we looked at speciation with varying degrees of sympatry in a biodiversity hotspot, focusing on a distinct morphological clade in the Cape Floristic Region in southern Africa, the Gladiolus carinatus species complex (Iridaceae). We investigate the mechanisms involved in population and species differentiation through a combination of ecological and genomic approaches. We estimated spatial and phenological overlap, differences in floral morphology, genetic isolation and genomic selection. A genetic coalescent analysis estimated that the time of divergence between lineages followed the establishment of available habitat in the Cape littoral plain where these species currently overlap geographically. Marked shifts in flowering time and morphology, which act as barriers to gene flow, have developed to varying degrees over the last 0.3–1.4 million years. An amplified fragment length polymorphism genome scan revealed signatures of divergent and balancing selection, although half of the loci consistently behaved neutrally. Divergent species outliers (1%) and floral morph outliers (3%) represent a small proportion of the genome, but these loci produced clear genetic clusters of species and significant associations with floral traits. These results indicate that the G. carinatus complex represents a continuum of recent speciation. We provide further evidence for ecological adaptation in the face of gene flow.  相似文献   

6.
It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.  相似文献   

7.
Analyses of genomewide polymorphism data have begun to shed light on speciation and adaptation. Genome scans to identify regions of the genome that are unusually different between populations or species, possibly due to divergent natural or sexual selection, are widespread in speciation genomics. Theoretical and empirical work suggests that such outlier regions may grow faster than linearly during speciation with gene flow due to a rapid transition between low and high reproductive isolation. We investigate whether this pattern could be attributed to neutral processes by simulating genomes under neutral evolution with varying amounts and timing of gene flow. Under both neutral evolution and divergent selection, simulations with little or no gene flow, or with a long allopatric period after its cessation, resulted in faster than linear growth of the proportion of the genome lying in outlier regions. Without selection, higher recent gene flow erased differentiation; with divergent selection, these same scenarios produced nonlinear growth to a plateau. Our results suggest that, given a history of gene flow, the growth of the divergent genome is informative about selection during divergence, but that in many scenarios, this pattern does not easily distinguish neutral and non‐neutral processes during speciation with gene flow.  相似文献   

8.
The most common classification of modes of speciation begins with the spatial context in which divergence occurs: sympatric, parapatric or allopatric. This classification is unsatisfactory because it divides a continuum into discrete categories, concentrating attention on the extremes, and it subordinates other dimensions on which speciation processes vary, such as the forces driving differentiation and the genetic basis of reproductive isolation. It also ignores the fact that speciation is a prolonged process that commonly has phases in different spatial contexts. We use the example of local adaptation and partial reproductive isolation in the intertidal gastropod Littorina saxatilis to illustrate the inadequacy of the spatial classification of speciation modes. Parallel divergence in shell form in response to similar environmental gradients in England, Spain and Sweden makes this an excellent model system. However, attempts to demonstrate 'incipient' and 'sympatric' speciation involve speculation about the future and the past. We suggest that it is more productive to study the current balance between local adaptation and gene flow, the interaction between components of reproductive isolation and the genetic basis of differentiation.  相似文献   

9.
Reproductive isolation plays the key role in speciation. According to the prevailing ideas, the main speciation mechanism is gradual accumulation of genetic differences in isolated populations (allopatric phase of speciation) based on mutations, selection, and genetic drift. In this case, reproductive isolation emerges as an occasional byproduct of adaptation to different conditions (ecological speciation) or accumulation of random changes in the gene pool resulting from long-term isolation. Pure sympatric speciation assumes isolation as a direct product of selection (divergent or disruptive selection) that favors individuals selectively mating with their likes. A third possibility is substantiated below. We believe that isolation can be a regular and determined product rather than occasional byproduct of divergence. It can rely on the friend/foe discrimination mechanisms, some of which can be “immune-based” and compare the partner’s and own properties (signaling molecules, pheromones, and other antigens in a broad sense). Antigens of the major histocompatibility complex (MHC) can play a substantial role in such testing of potential mates.  相似文献   

10.
Divergence with gene flow is well documented and reveals the influence of ecological adaptation on speciation. Yet, it remains intuitive that gene exchange inhibits speciation in many scenarios, particularly among ecologically similar populations. The influence of gene flow on the divergence of populations facing similar selection pressures has received less empirical attention than scenarios where differentiation is coupled with local environmental adaptation. I used a paired study design to test the influence of genomic divergence and introgression on plumage differentiation between ecologically similar allopatric replacements of Andean cloud forest birds. Through analyses of short‐read genome‐wide sequences from over 160 individuals in 16 codistributed lineages, I found that plumage divergence is associated with deep genetic divergence, implicating a prominent role of geographic isolation in speciation. By contrast, lineages that lack plumage divergence across the same geographic barrier are more recently isolated or exhibit a signature of secondary genetic introgression, indicating a negative relationship between gene flow and divergence in phenotypic traits important to speciation. My results suggest that the evolutionary outcomes of cycles of isolation and divergence in this important theatre of biotic diversification are sensitive to time spent in the absence of gene flow.  相似文献   

11.
Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.  相似文献   

12.
13.
Interest in ecological speciation is growing, as evidence accumulates showing that natural selection can lead to rapid divergence between subpopulations. However, whether and how ecological divergence can lead to the buildup of reproductive isolation remains under debate. What is the relative importance of natural selection vs. neutral processes? How does adaptation generate reproductive isolation? Can ecological speciation occur despite homogenizing gene flow? These questions can be addressed using genomic approaches, and with the rapid development of genomic technology, will become more answerable in studies of wild populations than ever before. In this article, we identify open questions in ecological speciation theory and suggest useful genomic methods for addressing these questions in natural animal populations. We aim to provide a practical guide for ecologists interested in incorporating genomic methods into their research programs. An increased integration between ecological research and genomics has the potential to shed novel light on the origin of species.  相似文献   

14.
Sexual selection may act as a promotor of speciation since divergent mate choice and competition for mates can rapidly lead to reproductive isolation. Alternatively, sexual selection may also retard speciation since polygamous individuals can access additional mates by increased breeding dispersal. High breeding dispersal should hence increase gene flow and reduce diversification in polygamous species. Here, we test how polygamy predicts diversification in shorebirds using genetic differentiation and subspecies richness as proxies for population divergence. Examining microsatellite data from 79 populations in 10 plover species (Genus: Charadrius) we found that polygamous species display significantly less genetic structure and weaker isolation‐by‐distance effects than monogamous species. Consistent with this result, a comparative analysis including 136 shorebird species showed significantly fewer subspecies for polygamous than for monogamous species. By contrast, migratory behavior neither predicted genetic differentiation nor subspecies richness. Taken together, our results suggest that dispersal associated with polygamy may facilitate gene flow and limit population divergence. Therefore, intense sexual selection, as occurs in polygamous species, may act as a brake rather than an engine of speciation in shorebirds. We discuss alternative explanations for these results and call for further studies to understand the relationships between sexual selection, dispersal, and diversification.  相似文献   

15.
16.
Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well‐identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.  相似文献   

17.
Divergent selection stemming from environmental variation may induce local adaptation and ecological speciation whereas gene flow might have a homogenizing effect. Gene flow among populations using different environments can be reduced by geographical distance (isolation-by-distance) or by divergent selection stemming from resource use (isolation-by-ecology). We tested for and encountered phenotypic and genetic divergence among Spanish crossbills utilizing different species of co-occurring pine trees as their food resource. Morphological, vocal and mtDNA divergence were not correlated with geographical distance, but they were correlated with differences in resource use. Resource diversity has now been found to repeatedly predict crossbill diversity. However, when resource use is not 100% differentiated, additional characters (morphological, vocal, genetic) must be used to uncover and validate hidden population structure. In general, this confirms that ecology drives adaptive divergence and limits neutral gene flow as the first steps towards ecological speciation, unprevented by a high potential for gene flow.  相似文献   

18.
Ecological adaptation is the driving force during divergence with gene flow and generates reproductive isolation early in speciation. Although gene flow opposes divergence, local adaptation can be facilitated by factors that prevent the breakup of favorable allelic combinations. We investigated how selection, genetic architecture, and geography have contributed to the maintenance of floral trait divergence and pollinator isolation between parapatric ecotypes of Mimulus aurantiacus. Combining greenhouse, field, and genomic studies, we show that sharp clines in floral traits are maintained by spatially varying selection. Although adaptation breaks down where the ecotypes co‐occur, leading to the formation of a hybrid zone, the largely non‐overlapping distributions of the ecotypes shield them from immigrant genes, facilitating divergence across most of the range. In contrast to the sharp genetic discontinuities observed across most hybrid zones, we observed a gradual cline in genome‐wide divergence and a pattern of isolation by distance across the landscape. Thus, contrary to a long period of allopatry followed by recent re‐contact, our data suggest that floral trait divergence in M. aurantiacus may have evolved with locally restricted, but ongoing gene flow. Therefore, our study reveals how the geographic distribution of an organism can contribute to the evolution of premating isolation in the early stages of divergence with gene flow.  相似文献   

19.
Nagata N  Kubota K  Yahiro K  Sota T 《Molecular ecology》2007,16(22):4822-4836
To reveal the role of diverged body size and genital morphology in reproductive isolation among closely related species, we examined patterns of, and factors limiting, introgressive hybridization between sympatric Ohomopterus ground beetles in central Japan using mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences. We sampled 17 local assemblages that consisted of two to five species and estimated levels of interspecific gene flow using the genetic distance, D(A), and maximum-likelihood estimates of gene flow. Sharing of haplotypes or haplotype lineages was detected between six of seven species that occurred in the study areas, indicating mitochondrial introgression. The intensity and direction of mitochondrial gene flow were variable among species pairs. To determine the factors affecting introgression patterns, we tested the relationships between interspecific D(A) and five independent variables: difference in body size, difference in genital size, phylogenetic relatedness (nuclear gene sequence divergence), habitat difference, and species richness of the assemblage. Body and genital size differences contributed significantly to preventing gene flow. Thus, mechanical isolation mechanisms reduce the chance of introgressive hybridization between closely related species. Our results highlight the role of morphological divergence in speciation and assemblage formation processes through mechanical isolation.  相似文献   

20.
Questions about how shifting distributions contribute to species diversification remain virtually without answer, even though rapid climate change during the Pleistocene clearly impacted genetic variation within many species. One factor that has prevented this question from being adequately addressed is the lack of precision associated with estimates of species divergence made from a single genetic locus and without incorporating processes that are biologically important as populations diverge. Analysis of DNA sequences from multiple variable loci in a coalescent framework that (i) corrects for gene divergence pre-dating speciation, and (ii) derives divergence-time estimates without making a priori assumptions about the processes underlying patterns of incomplete lineage sorting between species (i.e. allows for the possibility of gene flow during speciation), is critical to overcoming the inherent logistical and analytical difficulties of inferring the timing and mode of speciation during the dynamic Pleistocene. Estimates of species divergence that ignore these processes, use single locus data, or do both can dramatically overestimate species divergence. For example, using a coalescent approach with data from six loci, the divergence between two species of montane Melanoplus grasshoppers is estimated at between 200,000 and 300,000 years before present, far more recently than divergence estimates made using single-locus data or without the incorporation of population-level processes. Melanoplus grasshoppers radiated in the sky islands of the Rocky Mountains, and the analysis of divergence between these species suggests that the isolation of populations in multiple glacial refugia was an important factor in promoting speciation. Furthermore, the low estimates of gene flow between the species indicate that reproductive isolation must have evolved rapidly for the incipient species boundaries to be maintained through the subsequent glacial periods and shifts in species distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号