首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lecithin:cholesteryl acyl transferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin sensitivity and of the TaqIB CETP gene polymorphism (B1B2) on plasma LCAT, CETP, and PLTP activities (measured with exogenous substrates) and their responses to hyperinsulinemia. Thirty-two non-diabetic men without hyperlipidemia were divided in quartiles of high (Q(1)) to low (Q(4)) insulin sensitivity. Plasma total cholesterol, very low + low density lipoprotein cholesterol, triglycerides, and apolipoprotein (apo) B were higher in Q(4) compared to Q(1) (P < 0.05 for all), whereas HDL cholesterol and apoA-I were lowest in Q(4) (P < 0.05 for both). Plasma LCAT activity was higher in Q(4) than in Q(1) (P < 0. 05) and PLTP activity was higher in Q(4) than in Q(2) (P < 0.05). Insulin sensitivity did not influence plasma CETP activity. Postheparin plasma lipoprotein lipase activity was highest and hepatic lipase activity was lowest in Q(1). Insulin infusion decreased PLTP activity (P < 0.05), irrespective of the degree of insulin sensitivity. The CETP genotype exerted no consistent effects on baseline plasma lipoproteins and LCAT, CETP, and PLTP activities. The decrease in plasma PLTP activity after insulin was larger in B1B1 than in B2B2 homozygotes (P < 0.05). These data suggest that insulin sensitivity influences plasma LCAT, PLTP, lipoprotein lipase, and hepatic lipase activities in men. As PLTP, LCAT, and hepatic lipase may enhance reverse cholesterol transport, it is tempting to speculate that high levels of these factors in association with insulin resistance could be involved in an antiatherogenic mechanism. A possible relationship between the CETP genotype and PLTP lowering by insulin warrants further study.  相似文献   

2.
Lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and cholesteryl ester transfer protein (CETP) are key factors in remodeling of high density lipoproteins (HDL) and triglyceride-rich lipoproteins. We examined the effect of a large, 24 h intravenous fat load on plasma lipids and free fatty acids (FFA) as well as on plasma LCAT, PLTP, and CETP activity levels in 8 healthy men. The effect of concomitant insulin infusion was also studied, with 1 week between the study days. During Lipofundin(R) infusion, plasma triglycerides and FFA strongly increased after 8 and 24 h (P < 0.001), whereas HDL cholesterol decreased (P < 0.01). The increase in triglycerides was mitigated with concomitant insulin infusion (P < 0.05 from without insulin). Plasma LCAT activity increased by 17.7 +/- 7.7% after 8 h (P < 0.001) and by 26.1 +/- 11. 1% after 24 h (P < 0.001), PLTP activity increased by 19.7 +/- 15.6% after 24 h (P < 0.001), but CETP activity remained unchanged. Concomitant insulin infusion blunted the increase in plasma LCAT activity (P < 0.05 from without insulin), but not that in PLTP activity. One week after the first fat load, plasma non-HDL cholesterol (P < 0.02), and triglycerides (P = 0.05) were increased, whereas HDL cholesterol was decreased (P < 0.02). Plasma CETP and PLTP activity levels were increased by 34.8 +/- 30.4% (P < 0.02) and by 15.9 +/- 6.4% (P < 0.02), respectively, but LCAT activity was then unaltered. In summary, plasma LCAT, PLTP, and CETP activity levels are stimulated by a large intravenous fat load, but the time course of their responses and the effects of insulin coadministration are different. Changes in plasma LCAT and PLTP activities may be implicated in HDL and triglyceride-rich lipoprotein remodeling under the present experimental conditions.  相似文献   

3.
Hypertriglyceridemia (HTG) is associated with insulin resistance, increased cholesteryl ester transfer (CET), and low HDL cholesterol. Phospholipid transfer protein (PLTP) may be involved in these relationships. Associations between CET, lipids, insulin resistance, CETP and PLTP activities, and PLTP mass were investigated in 18 HTG patients and 20 controls. Effects of 6 weeks of bezafibrate treatment were studied in HTG patients. HTG patients had higher serum triglycerides, insulin resistance, free fatty acid (FFA), and CET, lower levels of HDL cholesterol (-44%) and PLTP mass (-54%), and higher CETP (+20%) and PLTP activity (+48%) than controls. Bezafibrate reduced triglycerides, CET (-37%), insulin resistance (-53%), FFA (-48%), CETP activity (-12%), PLTP activity (-8%), and increased HDL cholesterol (+27%), whereas PLTP mass remained unchanged. Regression analysis showed a positive contribution of PLTP mass (P = 0.001) but not of PLTP activity to HDL cholesterol, whereas insulin resistance positively contributed to PLTP activity (P < 0.01). Bezafibrate-induced change in CET and HDL cholesterol correlated with changes in CETP activity and FFAs, but not with change in PLTP activity. Bezafibrate-induced change in PLTP activity correlated with change in FFAs (r = 0.455, P = 0.058). We propose that elevated PLTP activity in HTG is related to insulin resistance and not to increased PLTP mass. Bezafibrate-induced diminished insulin resistance is associated with a reduction of CET and PLTP activity.  相似文献   

4.
A recent population-based study showed that cholesteryl ester transfer protein (CETP) gene variations, which relate to lower plasma CETP, may predict increased cardiovascular risk, in spite of higher HDL cholesterol. Among other functions, CETP activity contributes to cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport (RCT) process. We hypothesized that cellular cholesterol efflux stimulating capacity of plasma could be associated with CETP gene variation. In this study, we tested the extent to which the ability of plasma to promote cholesterol efflux from cultured human fibroblasts is associated with CETP gene variation. In 223 men, the -629C-->A CETP promoter polymorphism, plasma lipids, CETP mass, cholesteryl ester transfer (CET), lecithin:cholesterol acyltransferase (LCAT) activity and the ability of plasma to promote cholesterol efflux from human skin fibroblasts, obtained from a single normolipidemic donor, were determined. In -629CC homozygotes (n=52), cholesterol efflux, plasma CETP mass, CET and LCAT activity were higher, whereas HDL cholesterol was lower compared to -629 AA homozygotes (n=62) and -629CA+AA carriers (n=171) (P<0.05 to P<0.001). Univariate correlation analysis showed that cellular cholesterol efflux was related to CETP genotype (P=0.04), plasma CET (P<0.05), LCAT activity (P<0.001) and apo A-I (P<0.05). Multiple linear regression analysis confirmed the independent association of cellular cholesterol efflux to plasma with CETP genotype. In conclusion, an association of cellular cholesterol efflux with the -629C-->A CETP polymorphism, possibly also involving LCAT activity, could provide a mechanism explaining why CETP gene variation, which relates to lower plasma CETP, does not confer diminished cardiovascular risk.  相似文献   

5.
Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP action) are determined by adipokine levels. In this study, relationships of plasma CETP mass, PLTP activity and CET with leptin, resistin and adiponectin were analyzed in type 2 diabetic patients and control subjects. Plasma PLTP activity (P<0.001), CET (P<0.001), leptin (P=0.003), resistin (P<0.001), high sensitive C-reactive protein (P=0.005), and insulin resistance (HOMA(ir)) (P<0.001) were higher, whereas HDL cholesterol (P<0.001) and plasma adiponectin (P<0.001) were lower in 83 type 2 diabetic patients (32 females) than in 83 sex-matched control subjects. Multiple linear regression analysis demonstrated that in diabetic patients plasma leptin levels were related to plasma CETP mass (P=0.018) and PLTP activity (P<0.001), but not to the other adipokines measured. Plasma CET was inversely correlated with adiponectin in univariate analysis, but this association disappeared in multivariate models that included plasma lipids and CETP. In conclusion, both plasma CETP mass and PLTP activity are associated with plasma leptin in type 2 diabetes. The elevated CET in these patients is not independently related to any of the measured plasma adipokines.  相似文献   

6.
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism and reverse cholesterol transport. We have recently reported that plasma PLTP concentration correlates positively with plasma HDL cholesterol (HDL-C) but not with PLTP activity in healthy subjects. We have also shown that PLTP exists as active and inactive forms in healthy human plasma. In the present study, we measured plasma PLTP concentration and PLTP activity, and analyzed the distribution of PLTP in normolipidemic subjects (controls), cholesteryl ester transfer protein (CETP) deficiency, and hypo-alphalipoproteinemia (hypo-ALP). Plasma PLTP concentration was significantly lower (0.7 +/- 0.4 mg/l, mean +/- SD, n = 9, P < 0.001) in the hypo-ALP subjects, and significantly higher (19.5 +/- 4.3 mg/l, n = 17, P < 0.001) in CETP deficiency than in the controls (12.4 +/- 2.3 mg/l, n = 63). In contrast, we observed no significant differences in plasma PLTP activity between controls, hypo-ALP subjects, and CETP deficiency (6.2 +/- 1.3, 6.1 +/- 1.8, and 6.8 +/- 1.2 micro mol/ml/h, respectively). There was a positive correlation between PLTP concentration and plasma HDL-C (r = 0.81, n = 89, P < 0.001). By size exclusion chromatography analysis, we found that the larger PLTP containing particles without PLTP activity (inactive form of PLTP) were almost absent in the plasma of hypo-ALP subjects, and accumulated in the plasma of CETP deficiency compared with those of controls. These results indicate that the differences in plasma PLTP concentrations between hypo-ALP subjects, CETP deficiency, and controls are mainly due to the differences in the amount of the inactive form of PLTP.  相似文献   

7.
A 70-75 kDa high-density lipoprotein (HDL) particle with pre-beta-electrophoretic migration (pre-beta(1)-HDL) has been identified in several studies as an early acceptor of cell-derived cholesterol. However, the further metabolism of this complex has not been determined. Here we sought to identify the mechanism by which cell-derived cholesterol was esterified and converted to mature HDL as part of reverse cholesterol transport (RCT). Human plasma selectively immunodepleted of pre-beta(1)-HDL was used to study factors regulating pre-beta(1)-HDL production. A major role for phospholipid transfer protein (PLTP) in the recycling of pre-beta(1)-HDL was identified. Cholesterol binding, esterification by lecithin/cholesterol acyltransferase (LCAT) and transfer by cholesteryl ester transfer protein (CETP) were measured using (3)H-cholesterol-labeled cell monolayers. LCAT bound to (3)H-free cholesterol (FC)-labeled pre-beta(1)-HDL generated cholesteryl esters at a rate much greater than the rest of HDL. The cholesteryl ester produced in pre-beta(1)-HDL in turn became the preferred substrate of CETP. Selective LCAT-mediated reactivity with pre-beta(1)-HDL represents a novel mechanism increasing the efficiency of RCT.  相似文献   

8.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

9.
Plasma cholesteryl esters, synthesized within high density lipoproteins (HDL), may be transferred from HDL particles to other lipoproteins by plasma cholesteryl ester transfer protein (CETP). Alcohol consumption is associated with increased HDL cholesterol concentration and reduced plasma CETP activity. The alcohol-induced decrease in CETP activity may be due to a low concentration of CETP in plasma or the inhibition of CETP by specific inhibitor proteins or alterations in the composition of plasma lipoproteins. The first two possibilities are studied further in this paper using data on 47 alcohol abusers and 31 control subjects. The activity of CETP was measured as the rate of cholesteryl ester transfer between radio-labeled low density lipoproteins and unlabeled HDL using an in vitro method independent of endogenous plasma lipoproteins. Plasma CETP concentration was determined by a Triton-based radioimmunoassay. The alcohol abusers consuming alcohol (on average 154 g/day) had 28% higher HDL cholesterol (P less than 0.01), 27% lower plasma CETP concentration (P less than 0.001), and 22% lower plasma CETP activity (P less than 0.001) than the controls. Plasma CETP concentration showed a negative correlation with HDL cholesterol among all the subjects (r = -0.317, P less than 0.01) but not among the alcohol abusers alone (r = -0.102, N. S.). During 2 weeks of alcohol withdrawal, plasma CETP concentration and activity of 8 subjects increased, whereas HDL cholesterol decreased by 42% (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Two lipid transfer proteins are active in human plasma, cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP). Mice by nature do not express CETP. Additional inactivation of the PLTP gene resulted in reduced secretion of VLDL and subsequently in decreased susceptibility to diet-induced atherosclerosis. The aim of this study is to assess possible effects of differences in PLTP expression on VLDL secretion in mice that are proficient in CETP and PLTP. We compared human CETP transgenic (huCETPtg) mice with mice expressing both human lipid transfer proteins (huCETPtg/huPLTPtg). Plasma cholesterol in huCETPtg mice was 1.5-fold higher compared with huCETPtg/huPLTPtg mice (P < 0.001). This difference was mostly due to a lower HDL level in the huCETPtg/huPLTPtg mice, which subsequently could lead to the somewhat decreased CETP activity and concentration that was found in huCETPtg/huPLTPtg mice (P < 0.05). PLTP activity was 2.8-fold increased in these animals (P < 0.001). The human PLTP concentration was 5 microg/ml. Moderate overexpression of PLTP resulted in a 1.5-fold higher VLDL secretion compared with huCETPtg mice (P < 0.05). The composition of nascent VLDL was similar in both strains. These results indicate that elevated PLTP activity in huCETPtg mice results in an increase in VLDL secretion. In addition, PLTP overexpression decreases plasma HDL cholesterol as well as CETP.  相似文献   

11.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

12.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

13.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

14.
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport, a protective system against atherosclerosis. CETP, as well as plasma phospholipid transfer protein, belongs to members of the lipid transfer/lipopolysaccharide-binding protein (LBP) gene family, which also includes the lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein. Although these four proteins possess different physiological functions, they share marked biochemical and structural similarities. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). Two common mutations in the CETP gene, intron 14 splicing defect and exon 15 missense mutation (D442G), have been identified in Japanese HALP patients with CETP deficiency. The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low density lipoprotein. Although the pathophysiological significance of CETP in terms of atherosclerosis has been controversial, the in vitro experiments showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Epidemiological studies in Japanese-Americans and in the Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have shown an increased incidence of coronary atherosclerosis in CETP-deficient patients. The current review will focus on the recent findings on the molecular biology and pathophysiological aspects of plasma CETP, a key protein in reverse cholesterol transport.  相似文献   

15.
The effects of lecithin-cholesterol acyltransferase (LCAT) on the transfer of cholesterol esters mediated by lipid transfer protein (LTP) and its affinity for lipid and lipoprotein particles were investigated. When the single bilayer vesicle preparations (containing phosphatidylcholine, cholesterol, cholesteryl ester, and apolipoprotein- (apo) A-I at the molar ratio of 90:30:1.2:0.18) or high density lipoprotein 3 (HDL3) were used as the cholesteryl ester donor and low density lipoproteins (LDL) as the acceptor, the transfer activity of LTP was enhanced by the addition of low concentrations of LCAT. In contrast, no enhancement of cholesteryl ester transfer was observed upon addition of LCAT to either the discoidal bilayer particle preparations (containing phosphatidylcholine, cholesterol, cholesteryl ester, and apo-A-I at the molar ratio of 90:30:1.2:1.0) or high density lipoprotein 2 (HDL2). Although both apo-A-I and apo-A-II promoted the transfer of cholesteryl ester from vesicles to LDL, the additional enhancement of the transfer by LCAT was observed only with the vesicles containing apo-A-I. Gel permeation chromatography of LTP/vesicle and LTP/HDL3 mixtures in the presence and absence of LCAT showed that the affinity of LTP for both the vesicles and HDL3 increased upon addition of LCAT. In contrast, neither HDL2 nor discoidal bilayer particles showed any significant enhancement of LTP binding upon addition of LCAT. By using LCAT covalently bound to Sepharose 4B, a maximal interaction between LTP and bound LCAT was shown to occur at the ionic strength of 0.16. Deviation from this ionic strength reduced the extent of the interaction. At the ionic strength of 0.01 and 0.5, the elution volume of LTP was identical to that of bovine serum albumin.  相似文献   

16.
High-density lipoprotein (HDL) remodeling within the plasma compartment and the association between lecithin-cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) activity, and lipid, lipoprotein concentrations and composition were investigated. The aim was to examine the high sensitivity of C-reactive protein (hsCRP), lipid, apolipoprotein B (apoB), apoAI, total apoAII, apoAIInonB, apoB-containing apoAII (apoB:AII), total apoCIII, apoCIIInonB, apoB-containing apoCIII (apoB:CIII) concentration and LCAT and CETP activity to gain an insight into the association between them and LCAT and CETP, 57 post-renal transplant (Tx) patients with and without statin therapy and in 15 healthy subjects. Tx patients had moderate hypertriglyceridemia, hypercholesterolemia, and dyslipoproteinemia, disturbed triglyceride-rich lipoproteins (TRLs) and HDL composition, decreased LCAT, and slightly increased hsCRP but no CETP activity. Spearman’s correlation test showed the association between lipids and lipoproteins and LCAT or CETP, and multiple ridge stepwise forward regression showed that immunosuppressive therapy in Tx patients can disturb HDL and TRLs composition. The results suggest that inhibition or activation of LCAT is due, in part, to HDL-associated lipoprotein. Lipoprotein composition of apoAI, apoAIInonB, and apoCIIInonB in HDL particle and apoB:AII TRLs can contribute to decrease LCAT mass in Tx patients. Tx patients without statin and with lower triglycerides but higher HDL cholesterol concentration and disturbed lipoprotein composition of ApoAI and apoAII in HDL particle can decrease LCAT, increase LDL cholesterol, aggravate renal graft, and accelerate atherosclerosis and chronic heart diseases.  相似文献   

17.
Cholesteryl ester transfer protein may play a role in the cholesteryl ester metabolism between high density lipoproteins (HDL) and apolipoprotein B-containing lipoproteins. To investigate relationship between HDL and cholesteryl ester transfer protein (CETP) activity in the development of atherosclerosis, the present study has focused on CETP activity in the patients with familial hypercholesterolemia (GH). HDL-C and HDL-C/apo A-I mass ratio in heterozygous FH were lower than those in normolipidemic controls. There was a 2-fold increase in total CETP activity in incubated FH serum compared with normolipidemic controls. Assays for CETP activity in the lipoprotein deficient serum (d greater than 1.215 g/ml) were carried out by measuring the transfer of radioactive cholesteryl ester from HDL (1.125 less than d less than 1.21 g/ml) to LDL (1.019 less than d less than 1.060 g/ml). CETP activities in heterozygous FH (79 +/- 4 nmol/ml/h) was significantly higher than those in normolipidemic controls (54 +/- 6 nmol/ml/h). The increased total cholesteryl ester transfer mainly results from increased CETP activity in the d greater than 1.215 g/ml, possibly reflecting an increase in CETP mass in serum. Increased CETP activity in the d greater than 1.215 g/ml was correlated positively with IDL-cholesterol/triglyceride mass ratio (r = 0.496, p less than 0.01), and negatively with HDL-cholesterol/apo A-I mass ratio (r = -0.334, p less than 0.05). These results indicate that the enhanced CETP activities may contribute to increase risk for developing atherosclerosis in FH by changing the distribution of cholesteryl ester in serum lipoproteins.  相似文献   

18.
Expression of human lecithin cholesterol acyltransferase (LCAT) in mice (LCAT-Tg) leads to increased high density lipoprotein (HDL) cholesterol levels but paradoxically, enhanced atherosclerosis. We have hypothesized that the absence of cholesteryl ester transfer protein (CETP) in LCAT-Tg mice facilitates the accumulation of dysfunctional HDL leading to impaired reverse cholesterol transport and the development of a pro-atherogenic state. To test this hypothesis we cross-bred LCAT-Tg with CETP-Tg mice. On both regular chow and high fat, high cholesterol diets, expression of CETP in LCAT-Tg mice reduced total cholesterol (-39% and -13%, respectively; p < 0.05), reflecting a decrease in HDL cholesterol levels. CETP normalized both the plasma clearance of [(3)H]cholesteryl esters ([(3)H]CE) from HDL (fractional catabolic rate in days(-1): LCAT-Tg = 3.7 +/- 0.34, LCATxCETP-Tg = 6.1 +/- 0.16, and controls = 6.4 +/- 0.16) as well as the liver uptake of [(3)H]CE from HDL (LCAT-Tg = 36%, LCATxCETP-Tg = 65%, and controls = 63%) in LCAT-Tg mice. On the pro-atherogenic diet the mean aortic lesion area was reduced by 41% in LCATxCETP-Tg (21.2 +/- 2.0 micrometer(2) x 10(3)) compared with LCAT-Tg mice (35.7 +/- 2.0 micrometer(2) x 10(3); p < 0.001). Adenovirus-mediated expression of scavenger receptor class B (SR-BI) failed to normalize the plasma clearance and liver uptake of [(3)H]CE from LCAT-Tg HDL. Thus, the ability of SR-BI to facilitate the selective uptake of CE from LCAT-Tg HDL is impaired, indicating a potential mechanism leading to impaired reverse cholesterol transport and atherosclerosis in these animals. We conclude that CETP expression reduces atherosclerosis in LCAT-Tg mice by restoring the functional properties of LCAT-Tg mouse HDL and promoting the hepatic uptake of HDL-CE. These findings provide definitive in vivo evidence supporting the proposed anti-atherogenic role of CETP in facilitating HDL-mediated reverse cholesterol transport and demonstrate that CETP expression is beneficial in pro-atherogenic states that result from impaired reverse cholesterol transport.  相似文献   

19.
The effects of moderate alcohol consumption on the capacity of blood sera to promote acceptance of cholesterol (C) from Fu5AH hepatoma cells, esterification of delivered free C, and transfer of produced cholesteryl esters to apolipoprotein (apo) B-containing lipoproteins have been studied. Twenty male subjects with relatively high (>50 mg/dl, n = 10) and low (<50 mg/dl, n = 10) high density lipoprotein (HDL) C levels consumed for eight weeks red grape wine (0.3 g ethanol/kg body mass per day). Alcohol consumption reduced total C and low density lipoprotein C levels in both groups of subjects. Low HDL C subjects showed an increase in HDL C, apo AI, apo AII, and lipoprotein (Lp) AI particle levels after alcohol consumption. Alcohol did not affect free C efflux from the cells. However, after the following period of substitution of alcohol with an isocaloric amount of red grape juice, cellular C efflux markedly reduced. While lecithin:cholesterol acyltransferase (LCAT) activity increased during alcohol consumption only in subjects with low HDL C, high HDL C subjects showed a significant decrease in cholesteryl ester transfer protein (CETP) activity. At the same time, alcohol consumption reduced the endogenous C esterification rate and increased the transfer of endogenous cholesteryl esters to apo B-containing lipoproteins in both groups. Thus, alcohol consumption in moderate doses enhanced the anti-atherogenicity of the serum lipoprotein spectrum, supporting more effective C efflux from peripheral cells and transport of accepted C to apo B-containing lipoproteins. The effects of alcohol on the reverse cholesterol transport depend on the initial HDL C level.  相似文献   

20.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号