首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF.  相似文献   

2.
Cryomicroscopy was used to study the incidence of intracellular ice formation (IIF) in protoplasts isolated from rye (Secale cereale) leaves during subfreezing isothermal periods and in in vitro mature bovine oocytes during cooling at constant rates. IIF in protoplasts occurred at random times during isothermal periods, and the kinetics of IIF were faster as isothermal temperature decreased. Mean IIF times decreased from approximately 1700 s at -4.0 degrees C to less than 1 s at -18.5 degrees C. Total incidence of IIF after 200 s increased from 4% at -4.0 degrees C to near 100% at -15.5 degrees C. IIF behavior in protoplasts was qualitatively similar to that for Drosophila melanogaster embryos over the same temperature ranges (Myers et al., Cryobiology 26, 472-484, 1989), but the kinetics of IIF were about five times faster in protoplasts. IIF observations in linear cooling of bovine oocytes indicated a median IIF temperature of -11 degrees C at 16 degrees C/min and total incidences of 97%, 50%, and 19% at 16, 8, and 4 degrees C/min, respectively. A stochastic model of IIF was developed which preserved certain features of an earlier model (Pitt et al. Cryobiology 28, 72-86, 1991), namely Weibull behavior in IIF temperatures during rapid linear cooling, but with a departure from the concept of a supercooling tolerance. Instead, the new model uses the osmotic state of the cell, represented by the extent of supercooling, as the independent variable governing the kinetics of IIF. Two kinetic parameters are needed for the model: a scale factor tau 0 dictating the sensitivity to supercooling, and an exponent rho dictating the strength of time dependency. The model was fit to the data presented in this study as well as those from Myers et al. and Pitt et al. for D. melanogaster embryos with and without cryoprotectant, and from Toner et al. (Cryobiology 28, 55-71, 1991) for mouse oocytes. In protoplasts, D. melanogaster embryos, and mouse oocytes, the parameters were estimated from IIF times in the early stages of isothermal periods, while the osmotic state of the cell was relatively constant. In bovine oocytes, the parameters were estimated from linear cooling data. Without further calibration, the model was used to predict total IIF incidence under different cooling regimes. For protoplasts, D. melanogaster embryos, and bovine oocytes, the model's predictions were quite accurate compared to the actual data. In mouse oocytes, adjustment of the hydraulic permeability coefficient (Lp) at 0 degree C was required to yield realistic behavior.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Kinetics of intracellular ice formation (IIF) for isolated rat hepatocytes was studied using a cryomicroscopy system. The effect of the cooling rate on IIF was investigated between 20 and 400 degrees C/min in isotonic solution. At 50 degrees C/min and below, none of the hepatocytes underwent IIF; whereas at 150 degrees C/min and above, IIF was observed throughout the entire hepatocyte population. The temperature at which 50% of hepatocytes showed IIF (50TIIF) was almost constant with an average value of -7.7 degrees C. Different behavior was seen in isothermal subzero holding temperatures in the presence of extracellular ice. 50TIIF from isothermal temperature experiments was approximately -5 degrees C as opposed to -7.7 degrees C for constant cooling rate experiments. These experiments clearly demonstrated both the time and temperature dependence of IIF. On the other hand, in cooling experiments in the absence of extracellular ice, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously) suggesting the involvement of the external ice in the initiation of IIF. The effect of dimethyl sulfoxide (Me2SO) on IIF was also quantified. 50TIIF decreased from -7.7 degrees C in the absence of Me2SO to -16.8 degrees C in 2.0 M Me2SO for a cooling rate of 400 degrees C/min. However, the cooling rate (between 75 and 400 degrees C/min) did not significantly affect 50TIIF (-8.7 degrees C) in 0.5 M Me2SO. These results suggest that multistep protocols will be required for the cryopreservation of hepatocytes.  相似文献   

4.
The osmometric behavior of Drosophila melanogaster embryos in permeabilized eggs was studied in a microscope diffusion chamber designed to impose a rapid change in osmotic environment at various temperatures. A numerical model of NaCl diffusion in the chamber predicted that radial variations in concentration arising from the presence of a thin film of solution at the top of the chamber were negligible. On the basis of transient electrical conductance measurements in the chamber, characteristic time constants for the change in concentration averaged over the chamber depth occupied by the eggs were 0.99, 0.77, and 0.60 min at 0, 10, and 20 degrees C, respectively. The chamber response was sufficiently rapid that the characteristic response of the embryo was not masked. Equilibrium volumetric behavior of the embryos indicated that they behaved as nearly ideal osmometers over the range of 0.256 to 2.000 osm, and followed the relation FVeq = 0.123C-1 + 0.541, where FVeq is equilibrium fractional volume and C is osmolality. Nonlinear regression of volumetric data during osmotic contraction yielded an average Lp of 0.722 micron/(min.atm) at 20 degrees C and an apparent activation energy delta E of 8.11 kcal/mol. The coefficients of variation in the Lp estimates among individual embryos were 38, 18, and 47% at 0, 10, and 20 degrees C, respectively. With the use of probability rules and a model for volumetric behavior during freezing, it was determined that the observed variability in Lp (assuming delta E is fixed) considerably broadens the transition range of cooling rates over which the predicted probability of intracellular ice formation goes from 0 to 1. However, experimental observations (21) show the actual transition range is even wider, indicating that there exist other important sources of variability which determine the event of ice formation in D. melanogaster embryos.  相似文献   

5.
MII mouse oocytes in 1 and 1.5M ethylene glycol(EG)/phosphate buffered saline have been subjected to rapid freezing at 50 degrees C/min to -70 degrees C. When this rapid freezing is preceded by a variable hold time of 0-3 min after the initial extracellular ice formation (EIF), the duration of the hold time has a substantial effect on the temperature at which the oocytes subsequently undergo intracellular ice formation (IIF). For example, in 1M EG, the IIF temperatures are -23.7 and -39.2 degrees C with 0 and 2 min hold times; in 1.5M EG, the corresponding IIF temperatures are -29.1 and -40.8 degrees C.  相似文献   

6.
The purpose of the present study was to examine the effect of two different suprazero (room temperature +25 degrees C to +4 degrees C) cooling conditions on the measured water transport response of primate (Macaca mulatta) ovarian tissue in the presence and absence of cryoprotective agents (CPAs). Freshly collected Macaca mulatta (rhesus monkey) ovarian tissue sections were cooled at either 0.5 degrees C/min or 40 degrees C/min from 25 to 4 degrees C. A shape independent differential scanning calorimeter (DSC) technique was then used to measure the volumetric shrinkage during freezing of ovarian tissue sections at a freezing rate of 5 degrees C/min in the presence and absence of three different CPAs (0.85 M glycerol, 0.85 M dimethylsulfoxide, and 0.85 M ethylene glycol). Thus, water transport during freezing of primate ovarian tissue was obtained at eight different conditions (i.e., at four different freezing media with two different suprazero cooling conditions). The water transport response of ovarian tissue cooled rapidly from 25 to 4 degrees C was significantly different (P < 0.01) than that of slow cooled tissue, in the freezing media without CPAs and with dimethylsulfoxide. However, the differences in the measured water transport response due to the imposed suprazero cooling conditions were reduced with the addition of glycerol and ethylene glycol (statistically different with P < 0.05). By fitting a model of water transport to the experimentally obtained volumetric shrinkage data the best-fit membrane permeability parameters (L(pg) and E(Lp)) were determined. The best-fit parameters of water transport in primate ovarian tissue sections ranged from: L(pg) = 0.7 to 0.15 microm/min-atm and E(Lp) = 22.1 to 32.1 kcal/mol (the goodness of fit parameter, R(2) > 0.96). These parameters suggest that the "optimal rates of cryopreservation" for ovarian tissue are significantly dependent upon suprazero cooling conditions and the choice of CPA.  相似文献   

7.
The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.  相似文献   

8.
Cryoprotectors (propylene glycol), ethylene glycol, polyethylene glycol-1500 and dimethyl sulphoxide) are studied for their effect on permeability of liposomes for incorporated molecules of 5,5-dithiobis-2-nitrobenzoic acid (DTNB) under cooling within a temperature range from 0 degree C to -25 degrees C. A similarity is found in the way of ethylene glycol and propylene glycol, dimethyl sulphoxide and polyethylene glycol-1500 effect on the liposome permeability way. Cooling in the presence of ethylene glycol and propylene glycol causes changes in liposome permeability with a local maximum at -18 degrees C. In the medium with 2M NaCl and ethylene glycol, liposomes were resistant to cooling. Dimethyl sulphoxide and polyethylene glycol-1500 induced a two-phase kinetics of changes in liposome permeability, the first phase being within the 0 = -9 degrees C and the second--within -9--25 degrees C temperature ranges. The found differences are supposed to be associated with the effect of the cryoprotective compounds on the lipid crystallization in a lower-temperatures range.  相似文献   

9.
Kinetics of intracellular ice formation (IIF) under various freezing conditions was investigated for mouse oocytes at metaphase II obtained from B6D2F1 mice. A new cryostage with improved optical performance and "isothermal" temperature field was used for nucleation experiments. The maximum thermal gradient across the window was less than 0.1 degrees C/10 mm at sample temperatures near 0 degrees C. The dependence of IIF on the initial concentration of the suspending medium was found to be pronounced. The mean IIF temperatures were found to be -9.56, -12.49, -17.63, -22.20 degrees C for freezing at 120 degrees C/min in 200, 285, 510, and 735 mosm phosphate-buffered saline, respectively. For concentrations higher than 735 mosm, the kinetics of IIF showed a break point at approximately -31 degrees C. Below -31 degrees C, all the remaining unfrozen oocytes underwent IIF almost immediately over a temperature range of less than 3 degrees C. This dramatic shift in the kinetics of IIF suggests that there were two distinct mechanisms responsible for IIF during freezing. The effect of the cooling rate on the kinetics of IIF was also investigated in isotonic PBS. At 1 degrees C/min none of the oocytes contained ice, whereas, at 5 degrees C/min all the oocytes contained ice. The mean IIF temperatures for cooling rates between 1 and 120 degrees C/min were almost constant with an average of -12.82 +/- 0.6 degrees C (SEM). In addition, constant temperature experiments were conducted in isotonic PBS. The percentages of oocytes with IIF were 0, 50, 60, and 95% for -3.8, -6.4, -7.72, and -8.85 degrees C. In undercooling experiments, IIF was not observed until approximately -20 degrees C (at which temperature the whole suspension was frozen spontaneously), suggesting the involvement of the external ice in the initiation of IIF between approximately -5 and -31 degrees C during freezing of oocytes.  相似文献   

10.
We are currently investigating factors that influence intracellular ice formation (IIF) in mouse oocytes and oocytes of the frog Xenopus. A major reason for choosing these two species is that while their eggs normally do not possess aquaporin channels in their plasma membranes, these channels can be made to express. We wish to see whether IIF is affected by the presence of these channels. The present Xenopus study deals with control eggs not expressing aquaporins. The main factor studied has been the effect of a cryoprotective agent [ethylene glycol (EG) or glycerol] and its concentration. The general procedure was to (a) cool the oocytes on a cryostage to slightly below the temperatures at which extracellular ice formation occurs, (b) warm them to just below the melting point, and (c) then re-cool them to -50 degrees C at 10 degrees C/min. In the majority of cases, IIF occurs well into step (c), but a sizeable minority undergo IIF in steps (a) or (b). The former group we refer to as low-temperature flashers; the latter as high-temperature flashers. IIF is manifested as abrupt blackening of the egg, which we refer to as "flashing." Observations on the Linkam cryostage are restricted to Stage I and II oocytes, which have diameters of 200 300 microm. In the absence of a cryoprotective agent, that is in frog Ringers, the mean flash temperature for the low-temperature freezers is -11.4 degrees C, although a sizeable percentage flash at temperatures much closer to that of the EIF (-3.9 degrees C). When EG is present, the flash temperature for the low-temperatures freezers drops significantly to approximately -20 degrees C for EG concentrations ranging from 0.5 to 1.5 M. The presence of 1.5 M glycerol also substantially reduces the IIF temperature of the low-temperature freezers; namely, to -29 degrees C, but 0.5 and 1 M glycerol exert little or no effect. The IIF temperatures observed using the Linkam cryostage agree well with those estimated by calorimetry [F.W. Kleinhans, J.F. Guenther, D.M. Roberts, P. Mazur, Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry, Cryobiology 52 (2006) 128-138]. The IIF temperatures in Xenopus are substantially higher than those observed in mouse oocytes [P. Mazur, S. Seki, I.L. Pinn, F.W. Kleinhans, K. Edashige, Extra- and intracellular ice formation in mouse oocytes, Cryobiology 51 (2005) 29-53]. Perhaps that is a reflection of their much larger size.  相似文献   

11.
We developed a simple vitrification technique for bovine embryos that could permit direct transfer. Embryos were produced in-vitro by standard procedures. The base medium for cryopreservation was a chemically defined medium similar to SOF + 25 mM Hepes and 0.25% fatty acid free bovine serum albumin (FAF-BSA) (HCDM2). In experiment 1, embryos were first exposed to 3.5M ethylene glycol (V1) for 1, 2 or 3 min at room temperature (20-24 degrees C), and then moved to 7 M ethylene glycol (V2) at 4 or 20-24 degrees C and loaded in 0.25-mL straws. After 45 s in 7 M ethylene glycol, straws were placed in liquid nitrogen. Embryos that were loaded at 20-24 degrees C had higher survival rates than those loaded at 4 degrees C (P<0.05). Exposure for 1 min was best for morulae, while 3 min was best for blastocysts. In experiment 2, blastocysts were handled at 24 degrees C and exposed to two concentrations of ethylene glycol in V1 (3.5 or 5 M) followed by V2 as in experiment 1, two warming temperatures (20 or 37 degrees C) and two post-warming holding times until culture (5 or 15 min). Exposure to 5 M ethylene glycol and warming at 37 degrees C was the optimal combination of procedures, and embryos survived well after 15 min in straws if warmed at 37 degrees C. In experiment 3, ethylene glycol concentration (3, 4 or 5 M) and exposure time (0.5 or 1 min) during two-step addition of cryoprotectant were studied for bovine morulae. In experiment 4, morulae were exposed to V2 for 30 or 45 s in HCDM2 or Vigro holding medium and then held in 22-24 degrees C air or 37 degrees C water post-warming. Experiment 5 was like experiment 4 except blastocysts were used. Overall survival rates of blastocysts in experiment 5 averaged 80% of non-vitrified controls after 48 h culture. The survival rates with in vitro-produced morulae in experiments 1, 3 and 4 were unacceptable. Vitrification solutions based on Vigro tended to result in higher survival than HCDM2 for blastocysts, but not morulae. In experiment 6, the survival rate in vitro of in vivo-produced morulae and blastocysts after two-step vitrification was nearly 100%. Our vitrification technique was very effective for in vitro produced blastocysts, but not for in vitro-produced morulae.  相似文献   

12.
13.
Intracellular ice formation (IIF) plays a central role in cell damage during cryopreservation. We are investigating the factors which trigger IIF in Xenopus oocytes, with and without aquaporin water channels. Here, we report differential scanning calorimeter studies of Xenopus control oocytes which do not express aquaporins. Stage I to VI oocytes (which increase progressively in size) were investigated with emphasis on stage I and II because they are translucent and can also be studied under the cryomicroscope. Measurements were made in 1, 1.5, and 2M ethylene glycol (EG) in frog Ringers plus SnoMax. A multistep freezing protocol was used in which the samples were cooled until extracellular ice formation (EIF) occurred, partially remelted, slowly recooled through the EIF temperature, and then rapidly (10 degrees C/min) cooled. EIF in the 1, 1.5, and 2M EG occurred at -6.4, -7.8, and -8.9 degrees C, respectively. Freezing exotherms of individual stage I-VI oocytes were readily visible. A general trend was observed in which the IIF temperature of the early stage oocytes (I-III) was well below T(EIF) while the later stages (IV-VI) froze at temperatures much closer to T(EIF). Thus, in 1.5M EG, T(IIF) was -21.1, -25, and -26.6 degrees C in stages I-III, but was -17 and -8.5 degrees C for stage IV and V-VI. Concurrently, the percentage of oocytes in which IIF was observed fell dramatically from a high of 40 to 72% in early stages (I-III) to a low of only 7% in stage V-VI because, particularly in the later stages, IIF was hidden in the EIF exotherm. We conclude that early stage oocytes are a good model system in which to investigate modulators of IIF, but that late stage oocytes are damaged during EIF and infrequently supercool.  相似文献   

14.
Survival of vitrified sheep embryos in vitro and in vivo   总被引:2,自引:0,他引:2  
The effects of the composition of vitrification media, the duration of exposure to the media and the stage of development were examined on the survival of vitrified Day-6 sheep embryos. Vitrification media that contained two cryoprotectants in equal molar concentrations were used. In Experiment 1, the effects of the types (glycerol + propylene glycol or glycerol + ethylene glycol) and concentrations (3.5 + 3.5 or 4.5 + 4.5 M) of cryoprotectants and the level of BSA supplementation (0.4 or 20%) were investigated in a 2 x 2 x 2 design. The embryos were exposed to vitrification media for 30 sec at 18 to 24 degrees C before vitrification. The in vitro survival rate was not affected by the level of BSA supplementation, but there was an interaction between the types and concentrations of cryoprotectants used (P<0.01). Embryos cryopreserved in mixtures of glycerol + propylene glycol survived better when the concentration of cryoprotectants was 3.5 M while the survival of embryos cryopreserved in mixtures of glycerol + ethylene glycol was higher at 4.5 M cryoprotectant concentration. In Experiments 2 and 3, the effect of the duration of exposure (15, 30, 60 or 120 sec) to vitrification media at 4 to 12 degrees C was investigated on the survival rate in vivo. Vitrification media contained 3.5 M glycerol + 3.5 M propylene glycol or 4.5 M glycerol + 4.5 M ethylene glycol in Experiments 2 and 3, respectively. The survival rate in vivo, increased when the duration of exposure to vitrification media was increased from 15 to 30 sec, but the viability declined when the duration of exposure was further increased to 60 (Experiment 3) or to 120 sec (Experiment 2). The effect of the stage of development was significant only in Experiment 1 (P = 0.032), but in all three experiments the rate of survival increased with advancing stages of development from late morulae to late blastocysts. The best result was achieved in Experiment 2, when embryos were exposed to a mixture of 3.5 M glycerol + 3.5 M propylene glycol for 30 or 60 sec. Under these conditions 52% (22 42 ) of rapidly cryopreserved sheep embryos developed into lambs. This result shows that a simple rapid procedure for the cryopreservation of sheep embryos can produce a survival rate comparable to that obtained using more complex traditional procedures.  相似文献   

15.
Bovine IVF embryos developed on Days 7, 8 and 9 were equilibrated with 1.6 M propylene glycol (PG), 1.8 M ethylene glycol (EG), 1.1 M diethylene glycol (DEG) or 1.3 M ethylene glycol monomethyl ether (EME) for 10 to 20 min in modified phosphate buffered saline. (mPBS) supplemented with 10% superovulated cow serum. The embryos were loaded into 0.25-ml plastic straws and were placed directly into a 0 degrees C alcohol bath chamber and held for 2 min. They were cooled from 0 degrees C to -5.5 degrees C at 1 degrees C/min and then seeded, followed by a 10-min holding period at -5.5 degrees C. The straws were then cooled to -30 degrees C at 0.3 degrees C/min before plunging into liquid nitrogen. Embryos were thawed and placed directly into the culture medium and washed 3 times. The survival rates of the Day-9 embryos based on reappearance of blastocoele, expansion, and hatching after 48 h of post-thaw culture were significantly lower (P<0.01) than those of the Day-7 and 8 embryos, in all of the cryoprotectants tested. On the other hand, while the reappearance of blastocoele and expansion of blastocysts after 48 h of post-thaw culture were not significantly different among each cryoprotectant, the percentage of hatching blastocysts were significantly different between DEG and EME (P<0.05), between DEG and EG (P<0.01) and between PG and EG (P<0.05). These findings demonstrate that the age of the embryo (Day 7 and 8) is very important for the successful freezing of IVF bovine embryos. Also, as to the hatching rates, EME and EG are superior as cryoprotectants than the other 2 cryoprotectants tested.  相似文献   

16.
Mazur P  Pinn IL  Kleinhans FW 《Cryobiology》2007,55(2):158-166
The formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration. Then, the cell is cooled rapidly to -70 degrees C or below. This approach, often called interrupted rapid cooling, is the subject of this paper. Mouse oocytes were suspended in 1.5M ethylene glycol (EG)/PBS, rapidly cooled (50 degrees C/min) to -25 degrees C and held for 5, 10, 20, 30, or 40 min before being rapidly cooled (50 degrees C/min) to -70 degrees C. In cells held for 5 min, IIF (flashing) occurred abruptly during the second rapid cool. As the holding period was increased to 10 and 20 min, fewer cells flashed during the cooling and more turned black during warming. Finally, when the oocytes were held 30 or 40 min, relatively few flashed during either cooling or warming. Immediately upon thawing, these oocytes were highly shrunken and crenated. However, upon warming to 20 degrees C, they regained most of their normal volume, shape, and appearance. These oocytes have intact cell membranes, and we refer to them as survivors. We conclude that 30 min at -25 degrees C removes nearly all intracellular freezable water, the consequence of which is that IIF occurs neither during the subsequent rapid cooling to -70 degrees C nor during warming.  相似文献   

17.
Status of cryopreservation of embryos from domestic animals.   总被引:6,自引:0,他引:6  
The discovery of glycerol as an effective cryoprotectant for spermatozoa led to research on cryopreservation of embryos. The first successful offspring from frozen-thawed embryos were reported in the mouse and later in other laboratory animals. Subsequently, these techniques were applied to domestic animals. Research in cryopreservation techniques have included studies concerning the type and concentration of cryoprotectant, cooling and freezing rates, seeding and plunging temperatures, thawing temperatures and rates, and methods of cryoprotectant removal. To date, successful results based on pregnancy rates have been obtained with cryopreserved cow, sheep, goat, and horse embryos but no success has been reported in swine. Post-thaw embryo survival has been shown to be dependent on the initial embryo quality, developmental stage, and species. The freezing techniques most frequently used in research and by commercial companies are identified as "equilibrium" cryopreservation. In this technique the embryos are placed in a concentrated glycerol solution (1.4 M in PBS supplemented with BSA) at room temperature and the glycerol is allowed to equilibrate for a 20-min period. During the cooling process the straws are seeded (-4 to -7 degrees C) and cooling is continued at a rate of 0.3 to 0.5 degree C/min to -30 degrees C when bovine embryos may be plunged into LN2. Sheep embryos are successfully frozen with ethylene glycol (1.5 M) or DMSO (1.5 M) rather than with glycerol. Horse embryos have been frozen in 0.5 rather than 0.25 cc straws but with cooling rates and seeding and plunging temperatures similar to those used with bovine embryos. Swine embryos have shown a high sensitivity to temperature and cryoprotectants probably due to their high lipid content and a temperature decrease to 15 or 10 degrees C causes a dramatic increase in the percentage of degenerated embryos. However, a recent study has shown that hatched pig blastocysts survived exposure below 15 degrees C. Recent research has shown that embryos may also be frozen by a "nonequilibrium" method. This rapid freezing by vitrification consists of dehydration of the embryo at room temperature by a very highly concentrated vitrification media (3.5 to 4.0 M) and a very rapid freeze that avoids the formation of ice allowing the solution to change from a liquid to a glassy state. Vitrification solutions consist of combinations of sucrose, glycerol, and propylene glycol. With this technique, 50% pregnancy rates have been reported with the bovine blastocyst.  相似文献   

18.
Bovine oocytes surrounded with compact cumulus cells were cultured for 20 to 22 hours (38.5 degrees C, 5% CO(2)) in modified TCM-199 medium supplemented with 5% superovulated cow serum (SCS) and inseminated by in vitro capacitated spermatozoa. Day 7 to 8 embryos were equilibrated for 10 minutes in 1.3 M methyl cellosolve (MC), 1.1 M diethylene glycol (DEG), 1.8 M ethylene glycol (EG), 1.6 M propylene glycol (PG) and 1.1 M 1, 3-butylene glycol (BG) solutions. They were then loaded into 0.25-ml straws, placed into an alcohol bath freezer at 0 degrees C, cooled from 0 degrees C to -6 degrees C at -1 degrees C/minute, seeded, held for 10 minutes, and cooled again at -0.3 degrees C or -0.5 degrees C/minute to -30 degrees C. Straws were then plunged and stored in liquid nitrogen. After thawing in 30 degrees C water, the embryos were rehydrated in TCM-199 medium and then cultured for 48 hours in TCM-199 plus 5% SCS. Embryos were considered viable if they progressed to later developmental stages with good morphology. Some of the embryos frozen in each cryoprotectant were thawed and transferred nonsurgically without removing the cryoprotectant. Hatched embryos survived freezing and one-step dilution as follows: EG (50.0%), MC (53.6%), DEG (56.9%), PG (58.0%) and BG (11.5%). The survival rate of embryos cooled at -0.3 degrees C vs -0.5 degrees C/minute was not significantly different (P>0.05), however, blastocysts hatched most often (P<0.01) in vitro when cooled at a rate of -0.3 degrees C/minute (64.6%, 31 48 ) than at -0.5 degrees C/minute (22.6%, 12 53 ). Pregnancy rates resulting from embryos frozen in the different cryoprotectants were as follows: MC (48%, 10 21 ); DEG (30%, 3 10 ); EG (74%, 20 27 ); and PG (40%, 4 10 ). These results indicate that MC, DEG, EG and PG have utility as cryoprotectants for the freezing and thawing of IVF bovine embryos.  相似文献   

19.
This study was conducted to examine the effect of a quick-freezing protocol on morphological survival and in vitro development of mouse embryos cryopreserved in ethylene glycol (EG) at different preimplantation stages. One-cell embryos were harvested from 6-to 8-wk-old CB6F1 superovulated mice, 20 to 23 h after pairing with males of the same strain and hCG injection. The embryos were cultured in human tubal fluid (HTF) containing 4 mg/ml BSA under mineral oil at 37 degrees C in 5% CO(2) plus 95% room air at maximal humidity. Twenty-four to 96 h after collection, the embryos were removed from culture and frozen at the 2 cell, 4 to 8-cell, compact morula, early blastocyst, expanding blastocyst and expanded blastocyst stages. To perform the quick-freeze procedure, embryos were equilibrated in Dulbecco's phosphate buffered saline (DPBS) + 10 % fetal bovine serum (FBS) + 0.25 M sucrose + 3 M ethylene glycol (freeze medium) for 20 min at room temperature (22 to 26 degrees C) and loaded in a single column of freeze medium into 0.25-ml straws (4 to 5 embryos per straw). The straws were held in liquid nitrogen vapor for 2 min and immersed in liquid nitrogen. Embryos were thawed by gentle agitation in a 37 degrees C water bath for 20 sec and transferred to DPBS + 10 % FBS + 0.5 M sucrose (re-hydration medium) for 10 min at room temperature, rinsed 2 times in HTF plus 4 mg/ml BSA and then cultured for 24 to 96 h. Survival of embryos was based on their general morphological appearance after thawing and their ability to continue development upon subsequent culture in vitro. Survival of blastocysts after thawing also required expansion or reexpansion of the blastocoel after several hours in culture. Significant differences were found in the survival and development of mouse embryos at different developmental stages quick-frozen in ethylene glycol and sucrose: 2-cell embryos 43/84 (51%), 4 to 8-cell embryos 44/94 (47%), morulae and early blastocysts 56/70 (80%; P相似文献   

20.
Mouse spermatozoa in 18% raffinose and 3.8% Oxyrase in 0.25 x PBS exhibit high motilities when frozen to -70 degrees C at 20-130 degrees C/min and then rapidly warmed. However, survival is <10% when they are frozen at 260 or 530 degrees C/min, presumably because, at those high rates, intracellular water cannot leave rapidly enough to prevent extensive supercooling and this supercooling leads to nucleation and freezing in situ (intracellular ice formation [IIF]). The probability of IIF as a function of cooling rate can be computed by coupled differential equations that describe the extent of the loss of cell water during freezing and from knowledge of the temperature at which the supercooled protoplasm of the cell can nucleate. Calculation of the kinetics of dehydration requires values for the hydraulic conductivity (Lp) of the cell and for its activation energy (Ea). Using literature values for these parameters in mouse sperm, we calculated curves of water volume versus temperature for four cooling rates between 250 and 2000 degrees C/min. The intracellular nucleation temperature was inferred to be -20 degrees C or above based on the greatly reduced motilities of sperm that underwent rapid cooling to a minimum temperature of between -20 and -70 degrees C. Combining that information regarding nucleation temperature with the computed dehydration curves leads to the conclusion that intracellular freezing should occur only in cells that are cooled at 2000 degrees C/min and not in cells that are cooled at 250-1000 degrees C/min. The calculated rate of 2000 degrees C/min for IIF is approximately eightfold higher than the experimentally inferred value of 260 degrees C/min. Possible reasons for the discrepancy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号