首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Aim To examine how the genetic diversity of selected taxa of forest‐dwelling small mammals is distributed between and within the major rain forest domains of Amazonia and Atlantic Forest and the intervening interior forests of Brazil, as inferred by the relationships between gene genealogies and geography. I also addressed the historical importance of the central Brazilian forests in connecting Amazon and Atlantic Forest populations of rodents and marsupials. Methods I evaluated variation in the mitochondrial cytochrome b gene to estimate the levels of sequence divergence between those taxa occurring throughout the Amazon, Atlantic Forest, and forests in the Cerrado and Caatinga regions. I inferred the hierarchical relationships between haplotypes, populations and formal taxa using the cladistic approach of maximum parsimony. I compared areas and the clades identified by superimposing cladograms on the geographical distribution of samples. The degree of concordance both in phylogeny and the depth of the nodes in these phylogenies, in addition to patterns of geographical distribution of clades, permitted me to make inferences on how, when and where the taxa differentiated. Results Sequence similarity is often greater between samples from the Atlantic Forest and either Amazon or central Brazilian forests than it is within each of the two rain forest domains. The Atlantic Forest clades are either not reciprocally monophyletic or are the sister group to all the other clades. There is some indication of northern and southern components in the Atlantic Forest. Given the geographical distribution of clades and the relatively deep levels of divergence, the central Brazilian area does not behave as a separate region but is complementary to either Amazon or Atlantic Forest. Patterns of area relationships differ across taxa, suggesting that different processes and/or historic events affected the diversification within each lineage. Main conclusions The Amazon and the Atlantic forests are not exclusive in terms of their small mammal faunas; both overlap broadly with taxa occurring in gallery forests and dry forests in central Brazil. Central Brazilian forests are an integral part of the evolutionary scenario of lowland small mammals, playing an important role as present and past habitats for rain forest species. Therefore, representatives from this area should always be included in analyses of the evolutionary history of lowland rain forest faunas. The incongruence of branching patterns among areas is in agreement with recent results presented for Neotropical passerine birds and indicates that a single hypothesis of Neotropical area relationships is unlikely. These findings reinforce the idea that speciation in the Neotropics will not be explained by any single model of vicariance or climatic changes.  相似文献   

2.
Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond.  相似文献   

3.
Aim To examine the influence of climatic extinction filtering during the last glacial maximum (LGM; c. 18,000 yr bp ) and of the subsequent recolonization of forest faunas on contemporary assemblage composition in southern African forests. Location South Africa, Mozambique, Swaziland, Zimbabwe. Methods Data comprised presence/absence by quarter‐degree grid cell for forest‐dependent and forest‐associated birds, non‐volant mammals and frogs. Twenty‐one forest subregions were assigned to one of three previously identified forest types: Afrotemperate, scarp, and Indian Ocean coastal belt. Differences among forest types were examined through patterns and gradients of species richness and endemism, assemblage similarity, species turnover, and coefficients of species dispersal direction. The influence of contemporary environment on assemblage composition was investigated using partial canonical correspondence analysis. Several alternative biogeographical hypotheses for the recolonization of forest faunas were tested. Results Afrotemperate faunas are relatively species‐poor, have low species turnover, and are unsaturated and infiltrated by generalist species. In northern and central regions, communities are supplemented by recolonization from scarp forest refugia, and among frogs by autochthanous speciation in localized refugia. Scarp faunas are relatively species‐rich, contain many forest‐dependent species, have high species turnover, and overlap with coastal and Afrotemperate faunas. Coastal forests are relatively species‐rich with high species turnover. Main conclusions Afrotemperate communities were affected most by climatic extinction filtering events. Scarp forests were Afrotemperate refugia during the LGM and are a contemporary overlap zone between Afrotemperate and coastal forest. Coastal faunas derive from post‐LGM colonization along the eastern seaboard from tropical East African refugia. The greatest diversity is achieved in scarp and coastal forest faunas in northern KwaZulu–Natal province. This historical centre of diversity has influenced the faunal diversity of nearly all other forests in South Africa. The response of vertebrate taxa to large‐scale, historical processes is dependent on their relative mobility: forest birds best illustrate patterns resulting from post‐glacial faunal dispersal, while among mammals and frogs the legacy of climatic extinction filtering remains stronger.  相似文献   

4.
Aim This study aims to elucidate the phylogeography of the murid rodent Praomys misonnei and to document whether or not rain forest refugia and rivers structure patterns of diversity within this species. Location Tropical Africa, from Ghana to Kenya. Methods Patterns of genetic structure and signatures of population history (cytochrome b gene) were assessed in a survey of 229 individuals from 54 localities. Using maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intra‐specific relationships and tested hypotheses for historical patterns of gene flow within P. misonnei. Results Our phylogenetic analyses reveal a strong phylogeographical structure. We identified four major geographical clades within P. misonnei: one clade in Ghana and Benin, a Nigerian clade, a West Central African clade and a Central and East African clade. Several subclades were identified within these four major clades. A signal of population expansion was detected in most clades or subclades. Coalescence within all of the major clades of P. misonnei occurred during the Middle Pleistocene and/or the beginning of Late Pleistocene. Main conclusions Our results suggest a role for both Pleistocene refugia and rivers in structuring genetic diversity in P. misonnei. This forest‐dwelling rodent may have been isolated in a number of forest fragments during arid periods and expanded its range during wetter periods. Potential forest refugia may have been localized in Benin–Ghana, south‐western Cameroon, southern Gabon, northern Gabon and eastern Democratic Republic of Congo–western Uganda. The Niger and/or the Cross Rivers, the Oubangui‐Congo, Sanaga, Ogooue and/or Ivindo Rivers probably stopped the re‐expansion of the species from relict areas.  相似文献   

5.
The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.  相似文献   

6.
Aim Mechanisms generating biodiversity and endemism are influenced by both historical and ecological patterns, and the relative roles of history vs. ecological interactions are still being debated. The phylogeography of one rain forest‐restricted caddisfly species, Tasimia palpata, thought to have good dispersal abilities, is used to address questions about shifts of highland rain forest habitat during Pleistocene glaciations and about their consequences for haplotype composition and distribution. Location Tasimia palpata occurs in highland subtropical rain forest patches, which are separated from one another by lowland dry bush, in south‐eastern Queensland, Australia. Methods We sequenced 375 base pairs of the mitochondrial cytochrome oxidase I gene from 169 individuals (20 populations) of T. palpata, mainly from three fragmented subtropical rain forest blocks, revealing 46 haplotypes. Analysis of molecular variance (amova ), genetic divergence between populations, nested clade analyses and tests based on coalescent theory were used to analyse phylogeographical relationships among T. palpata populations. Results amova indicates spatial genetic structure between isolated subtropical rain forest patches, with an isolation‐by‐distance effect. Tests based on coalescent theory suggest a repeated process of population reductions and divergence between isolated rain forests during Pleistocene glaciations as a consequence of habitat constrictions followed by population expansions during interglacial periods when subtropical rain forest expanded. In addition, these results suggest that, prior to the Pleistocene, rain forest and T. palpata had more widespread distributions in this region. Main conclusions Historical rain forest expansion and contraction during the Pleistocene resulted in changes in demography and genetic diversity of T. palpata, as well as in an increase in genetic divergence between populations from different patches of subtropical rain forest. Despite the fact that this caddisfly species was isolated in separate highland rain forest patches at various times during the Pleistocene, there is no evidence of allopatric speciation during the Quaternary, which contrasts with other examples of endemism and high diversity in rain forest highlands.  相似文献   

7.
Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao’s H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness.  相似文献   

8.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

9.

Aim

The two main hypotheses about the Neotropical palaeovegetation, namely that of Amazonian refugia by Haffer and of the Pleistocene arc by Prado and Gibbs, are still constantly debated. We offer new insights on this debate using ecological niche modelling with combined climate–soil predictors to test both hypotheses, reconstruct the palaeovegetation of the Last Glacial Maximum (LGM; 21 ka) and Mid‐Holocene (Mid‐H; 6 ka) and indicate the configuration of refugia areas.

Location

Brazil.

Time period

Last 21 ka.

Major taxa studied

Biomes.

Methods

We modelled the environmental space of the 10 most representative biomes with the RandomForest classifier, using climate predictors from three atmospheric general circulation models (CCSM4, MPI‐ESM‐P and MIROC‐ESM) and soil predictors, the same for the different situations. Based on the consensus among the models, we reconstructed the palaeovegetation cover for LGM and Mid‐H and used fossil pollen sites to validate the reconstructions in a direct comparison.

Results

The climate in the past was cooler and wetter throughout most of the territory. The Amazon basin region was the most affected by climate change in the last 21 ka, with equatorial rain forest retracting to refugia areas, while the tropical rain forest (with climatic preferences similar to the Atlantic forest) expanded in the basin. In southern Brazil, the mixed forest (Araucaria forest) shifted to lower latitudes, while the grasslands expanded. In most biomes, the greatest changes occurred in the ecotonal zones, supported by pollen fossils.

Main conclusions

With regard to Haffer's hypothesis, the forests of the Amazonian lowlands retreated to refugia areas, while the colder and wetter climate of the basin created a favourable niche for another type of forest, instead of savanna. The advance of dry vegetation was restricted to ecotonal conditions, preventing the formation of a continuous Pleistocene arc, predicted by Prado and Gibbs's hypothesis.  相似文献   

10.
Historical climatic refugia predict genetic diversity in lowland endemics of the Brazilian Atlantic rainforest. Yet, available data reveal distinct biological responses to the Last Glacial Maximum (LGM) conditions across species of different altitudinal ranges. We show that species occupying Brazil’s montane forests were significantly less affected by LGM conditions relative to lowland specialists, but that pre-Pleistocene tectonics greatly influenced their geographic variation. Our conclusions are based on palaeoclimatic distribution models, molecular sequences of the cytochrome b, 16S, and RAG-1 genes, and karyotype data for the endemic frog Proceratophrys boiei. DNA and chromosomal data identify in P. boiei at least two broadly divergent phylogroups, which have not been distinguished morphologically. Cytogenetic results also indicate an area of hybridization in southern São Paulo. The location of the phylogeographic break broadly matches the location of a NW–SE fault, which underwent reactivation in the Neogene and led to remarkable landscape changes in southeastern Brazil. Our results point to different mechanisms underpinning diversity patterns in lowland versus montane tropical taxa, and help us to understand the processes responsible for the large number of narrow endemics currently observed in montane areas of the southern Atlantic forest hotspot.  相似文献   

11.
We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.  相似文献   

12.
Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.  相似文献   

13.
热带地区环境变化对研究全球气候变化显得越来越重要,热带地区的古环境记录,特别是孢粉记录是恢复过去气候的重要方法,东亚热带地区在冰期-间冰期的气候影响下,生态环境主要表现为山地植被带的垂直升降,因此,定量恢复热带地区第四纪植被垂直移动的幅度,以及作为古气候的替代性指标进行数量化转换是热带地区孢粉研究的关键,然而,我国热带地区现代孢粉雨和植被的关系研究程度较低,给热带第四纪孢粉古生态的恢复和对比带来困难,本研究较系统地总结了海南岛从低地平原到五指山1860m的垂直植被带表土的孢粉散布规律,为热带地区孢粉古环境的重建提供了新的基础数据。研究结果表明,孢粉组合的变化与垂直植被带紧密相关,孢粉的多样性随海拔升高而降低,其中针叶类随海拔升高而增加,蕨类孢子则相应减少,在低地和低山丘陵,孢粉组合显示出为干扰的影响,如防风雨的主要树种木麻黄(Casuarina),行道树台湾相思(Acacia richii)和人为砍伐后大面积生长的芒箕(Dicranopteris)群落等在一些孢粉谱中特别高,尽管如此,孢粉组合反映的垂直植被带变化仍然是清楚的,海南岛由下至上可划分出5个表土孢粉组合带-低地人类强烈干扰带(<400m):Mallotus,Casuarina,Pinus,Myrica,Palmae,Poaceaae,Dicranopteris:--低地质陵地带(400-800m):Quercus,Castanopsis,Mallotus,Myrica,Platea,Meliaceae和大量孢子(包括Dicranopteris);--山地下带(800-1200m):Castanopsis,Quercus,Podocarpus,Dacrydium,Cyathea和单缝孢子;--山地上带(1200-1600m):Dacrydium,Pinus,Altingia,Quercus,Castanopsis;--山顶带(>1600m):Pinus,Rhododendron,Dacrydium,Symplocos.  相似文献   

14.
In Europe, southern peninsulas served as major refugia during Pleistocene cold periods. However, growing evidence has revealed complex patterns of glacial survival within these southern regions, with multiple glacial refugia within each larger refugial area. We investigated the extent to which patterns of endemism and phylogeographic are concordant across animal species in the Iberian Peninsula, one of the most important unglaciated areas in Europe during the Pleistocene, can be explained in terms of climatic stability. We found that historical climatic stability (notably climate velocity measures integrating macroclimatic shifts with local spatial topoclimate gradients) was often among the most important predictors of endemic species richness for different taxonomic groups using models that also incorporated measures of modern climate. Furthermore, for some taxonomic groups, climatic stability was also correlated with patterns of spatial concordance in interpopulation genetic divergence across multiple taxa, and private haplotypes were more frequently found in relatively stable areas. Overall, our results suggest that both endemism patterns and cross‐taxa concordant phylogeographic patterns across the Iberian Peninsula to some extent are linked to spatial variation in Late Quaternary climate stability, in agreement with the proposed ‘refugia‐within‐refugia’ scenario. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 13–28.  相似文献   

15.
A widely accepted paradigm for speciation in tropical forests, the refuge theory, requires periodic habitat fragmentation driven by global climatic fluctuations to provide conditions for allopatric speciation. This implies that comparative species richness in refugia is due to loss of diverse communities in areas affected by climatic cycles. In this study we compare distribution patterns of bird and plant taxa which we consider to be of either deep phylogenetic lineages or recent radiations. It is demonstrated that lowland areas which have been postulated as Pleistocene refugia are dominated by species which represent lineages of pre-Pleistocene age. Since variations in species richness within these forest tracts reflect currently apparent environmental variables which might be considered to determine carrying capacity, we do not need to postulate that richness is the result of changes in forest cover in the past. Recently diversified taxa of plants and birds are found mainly at the periphery of the main rain forest blocks and in habitat islands outside them. Here, peak concentrations of young restricted-range species are often congruent with clusters of old and biogeographically relictual species. It is suggested that this reflects special intrinsic environmental properties of these areas, in the form of long-term environmental stability caused mainly by persistent orographic rain or mist. In this case, richness is not necessarily due to extinction outside these areas. Stability not only enables survival of relictual taxa, but also promotes morphological differentiation of radiating taxa, leading to aggregates of taxa of restricted distribution.  相似文献   

16.
The influence of functional traits on floristic patterns remains poorly understood in tropical rain forests. This contribution explores whether patterns of endemism of plant species are influenced by their life form and mode of dispersal. We used a comprehensive dataset of 3650 georeferenced plant specimens collected in Cameroon belonging to 115 taxa of Orchidaceae and 207 Rubiaceae endemic to Atlantic Central Africa. Species diversity of each family was compared using raw species richness (SR) and an index of species diversity (S k ) using subsampling procedure to correct for sampling bias. Measures were compared at three scales (square grids of one half-degree and one-degree per side and ecoregions) and according to elevation and continentality gradients. Species similarity between grid cells was measured using the sample-size corrected NNESS index. For both families, SR and S k decreased along the continentality gradient. In forest habitats below 1500 m altitude, both Orchidaceae and Rubiaceae show similar endemism patterns, but they differ in intensity. At higher altitudes, S k is higher for orchids due to the presence of endemic terrestrial taxa in grasslands, where the endemic Rubiaceae flora is rather poor. Substantial endemism observed at the ecoregion level and turnover analysis supported the role of the Sanaga River as a phytogeographical boundary. Similar endemism patterns were observed in lowland forests for Orchidaceae and Rubiaceae, even though Orchidaceae are assumed to have better long distance dispersal capabilities. The dispersal ability of Orchidaceae could be limited by the need of specific mycorhizal fungi for seed germination or host specificity for epiphytic orchids.  相似文献   

17.
Phylogeographic studies have merged different disciplines to explain speciation processes at both spatial and time scales. Although the number of phylogeographic extant studies has increased almost exponentially, few have been conducted in tropical countries, especially using plants. Plants are interesting models for such studies because their responses to different habitat conditions are reflected directly in the size and distribution of populations, enabling direct tests of alternative demographic scenarios. Here, we review phylogeographic studies using plant species occurring in different vegetation domains within Brazil, which has the greatest number of plant species in the world. Based on a detailed examination of 41 published articles, we synthesized the current knowledge and discussed the main processes driving the high levels of plant diversity within Brazilian domains. General patterns of diversification could be inferred due to the number of species studied, especially in the Cerrado and Atlantic Forest, the most intensively studied domains (34.1% and 17.1% of the studies, respectively). Distinct vegetation types within both biomes were affected differently by the Pleistocene climatic oscillations. Edaphic conditions and geographical barriers (rivers and mountains) have also influenced the phylogeographical patterns of plants species from Amazonia and the Atlantic Forest. Other Brazilian domains, such as the Caatinga, Pantanal, and Pampas, have been studied to a lesser extent and no common phylogeographic pattern across species could be inferred. Issues regarding past connections between distinct domains also remain unclear, including those affecting the two main forest domains in South America. Future research on plant species will fill these information gaps, improving our understanding of the complex diversification processes affecting the South American biota.  相似文献   

18.
The east coast of Brazil comprises an extensive area inserted in the Tropical Atlantic Domain and is represented by sandy plains of beach ridges commonly known as Restingas. The coastal environments are unique and house a rich amphibian fauna, the geographical distribution patterns of which are incipient. Biogeographical studies can explain the current distributional patterns and provide the identification of natural biogeographical units. These areas are important in elucidating the evolutionary history of the taxa and the areas where they occur. The aim of this study was to seek natural biogeographical units in the Brazilian sandy plains of beach ridges by means of distribution data of amphibians and to test the main predictions of the vicariance model to explain the patterns found. We revised and georeferenced data on the geographical distribution of 63 anuran species. We performed a search for latitudinal distribution patterns along the sandy coastal plains of Brazil using the non-metric multidimensional scaling method (NMDS) and the biotic element analysis to identify natural biogeographical units. The results showed a monotonic variation in anuran species composition along the latitudinal gradient with a break in the clinal pattern from 23°S to 25°S latitude (states of Rio de Janeiro to São Paulo). The major predictions of the vicariance model were corroborated by the detection of four biotic elements with significantly clustered distribution and by the presence of congeneric species distributed in distinct biotic elements. The results support the hypothesis that vicariance could be one of the factors responsible for the distribution patterns of the anuran communities along the sandy coastal plains of eastern Brazil. The results of the clusters are also congruent with the predictions of paleoclimatic models made for the Last Glacial Maximum of the Pleistocene, such as the presence of historical forest refugia and biogeographical patterns already detected for amphibians in the Atlantic Rainforest.  相似文献   

19.
Numerous hypotheses have been proposed for the historical processes governing the rich endemism of Madagascar's biodiversity. The ‘watershed model’ suggests that drier climates in the recent geological past have resulted in the contraction of forests around major watersheds, thereby defining areas of endemism. We test whether this hypothesis explains phylogeographical patterns in a dry forest‐dependent rodent, Eliurus myoxinus, an endemic species widely distributed through western Madagascar. We sequenced the mitochondrial cytochrome b locus and nuclear introns of the β‐fibrinogen and the growth hormone receptor genes for E. myoxinus. Using a parametric bootstrapping approach, we tested whether the mitochondrial gene tree data fit expectations of local differentiation given the watershed model. We additionally estimated population differentiation and historical demographic parameters, and reconstructed the spatial history of E. myoxinus to highlight spatial and temporal patterns of differentiation. The data do not support the watershed model as a clear explanation for the genetic patterns of diversity within extant E. myoxinus populations. We find striking patterns of latitudinal genetic structure within western Madagascar, and indicate possible roles for environmental and ecological gradients along this axis in generating phylogeographical diversity. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 500–517.  相似文献   

20.
The accumulation of biodiversity in tropical forests can occur through multiple allopatric and parapatric models of diversification, including forest refugia, riverine barriers and ecological gradients. Considerable debate surrounds the major diversification process, particularly in the West African Lower Guinea forests, which contain a complex geographic arrangement of topographic features and historical refugia. We used genomic data to investigate alternative mechanisms of diversification in the Gaboon forest frog, Scotobleps gabonicus, by first identifying population structure and then performing demographic model selection and spatially explicit analyses. We found that a majority of population divergences are best explained by allopatric models consistent with the forest refugia hypothesis and involve divergence in isolation with subsequent expansion and gene flow. These population divergences occurred simultaneously and conform to predictions based on climatically stable regions inferred through ecological niche modelling. Although forest refugia played a prominent role in the intraspecific diversification of S. gabonicus, we also find evidence for potential interactions between landscape features and historical refugia, including major rivers and elevational barriers such as the Cameroonian Volcanic Line. We outline the advantages of using genomewide variation in a model‐testing framework to distinguish between alternative allopatric hypotheses, and the pitfalls of limited geographic and molecular sampling. Although phylogeographic patterns are often species‐specific and related to life‐history traits, additional comparative studies incorporating genomic data are necessary for separating shared historical processes from idiosyncratic responses to environmental, climatic and geological influences on diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号