首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuous introduction of new antineoplastic drugs and their use as complex mixture emphasize the need to carry out correct health risk assessment. The aim of this study was to evaluate genotoxic effects of antineoplastic drugs in nurses (n=25) and pharmacy technicians (n=5) employed in an oncology hospital. The nurses administered antineoplastic drugs in the day-care hospital (n=12) and in the wards (n=13), and pharmacy technicians prepared the drugs in the central pharmacy. We performed the micronucleus (MN) test with lymphocytes and exfoliated buccal cells and conducted traditional analysis of chromosomal aberrations (CA). Thirty healthy subjects were selected as controls. Monitoring of surface contamination with cyclophosphamide, 5-fluorouracil, ifosfamide, cytarabine, and gemcitabine showed the presence of detectable levels only for cyclophosphamide, 5-fluorouracil and ifosfamide. In addition, we measured the 5-fluorouracil metabolite alpha-F-betaalanine in the urine of all subjects and found significant concentrations only in 3 out of 25 nurses. The micronucleus assay with lymphocytes did not show significant differences between exposed and control groups, while the same test with exfoliated buccal cells found higher values in nurses administering antineoplastic drugs than in pharmacy employees. In the CA analysis, we detected in exposed groups a significant increase (about 2.5-fold) of structural CA, particularly breaks (up to 5.0-fold). Our results confirm the genotoxic effect of antineoplastic drugs in circulating blood lymphocytes. Moreover, in exfoliated buccal cells the data show more consistent genetic damage induced during administration of the antineoplastic drugs than during their preparation. The data also stress the use of this non-invasive sampling, to assess occupational exposure to mixture of chemicals at low doses.  相似文献   

2.
The use of antineoplastic agents for the treatment of cancer and other non-neoplastic diseases is an increasingly common practice in hospitals. As a result, workers involved with handling antineoplastic drugs may be accidentally exposed to these agents, placing them at potential risk for long term adverse effects. To date, the challenge of protecting workers’ health is persisting and expanding, with an increasing number of publications demonstrating that contamination of antineoplastic drugs (ADs) is still present on work surfaces after cleaning procedures are concluded. In this paper, five workplaces were selected for surveillance of professional exposure to ADs. Hospital pharmacies involved in the study were set in the North (Units A1 and B2), Center (Units C3 and D4) and South (Unit E5) of Italy. Contamination levels on a number of work surfaces and trends over a 10-year period are presented. Environmental and biological levels were obtained by high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). A strong reduction of surface contamination was evidenced since 2003, when the recommended procedures for the safe handling of antineoplastic drugs started to be followed by health care workers. Employers’ adherence to these recommendations allowed risk characterisation to achieve other important goals. The percentage of positive urine samples was found to be around 30% in the 1990s and 2% in the 2000s. Moreover, no positive samples were detected in 2006 or 2007. In conclusion, our study emphasized that one helpful strategy to reduce risk to all potentially exposed workers is also provided by a data-storage system that allows potential risks of working to be rapidly identified and controlled.  相似文献   

3.
Cytostatic anticancer drugs are known as carcinogenic, mutagenic, and teratogenic risk factors for health care workers occupationally exposed. It has been demonstrated that the administration of interleukin-15 in rat models of colon carcinoma protects against chemotherapy-induced gastrointestinal toxicities. We found that occupational exposure to chemotherapeutic antiblastic agents in vivo modified circulating levels of interleukin-15 in 17 health care workers exposed to antineoplastic drugs in relation to their jobs and in as many healthy age- and sex-matched subjects. Health care workers displayed significantly higher circulating interleukin-15 levels compared to their age-matched controls. If this increase representing an anticancer response remains to be established, these findings strengthen the idea of a therapeutic use of interleukin-15 in the field of cancer.  相似文献   

4.
A genotoxic effect for antineoplastic drugs, in particular micronucleus induction, has been shown in several studies. The aim of our study was to assess genotoxic effects in nurses administering different mixtures of antineoplastic drugs in an oncology hospital by evaluating the frequency of micronuclei in exfoliated buccal cells and blood lymphocytes by use of the standard micronucleus (MN) test and by identifying, by means of FISH analysis with centromeric probes, the mechanism of micronucleus induction (clastogenic or aneugenic). The study group comprised 23 nurses, 10 of whom worked in the day-care hospital and 13 in the ward. Twenty healthy subjects were selected as controls. Pan-centromeric FISH analysis was performed on lymphocytes from a selected group of nurses (12/23 subjects) characterized by higher MN frequencies as observed by standard Giemsa staining. A significant increase of micronucleus frequency compared with controls was found in exfoliated buccal cells of both groups of nurses: day-care hospital nurses 0.92 versus 0.45 (p=0.034) and ward nurses 0.94 versus 0.45 (p=0.051). An increase, although not statistically significant, of mean MN frequency was also found by the MN standard test on lymphocytes of the day-care hospital nurses (10.9 versus 7.5; p=0.056), while no differences were found in ward nurses (8.15 versus 7.5; p=0.56). We found that the administration of antineoplastic drugs by nurses in ward units induced a higher frequency of FISH MN+ (43% of subjects) than in the day-care hospital (20%). This was associated with the micronucleus size percentage. This finding could be correlated with the different compositions of administered mixtures of antineoplastic drugs: in ward units the mixtures contained drugs, such as vinorelbine, that were absent in the mixtures administered in the day-care hospital. Our results show genetic damage induced by administration of antineoplastic drugs, particularly in exfoliated buccal cells. This result suggests the useful application of this non-invasive sampling to evaluate genotoxic effects of occupational exposure to mixtures of inhalable chemicals at low doses.  相似文献   

5.
I have found that antineoplastic drugs which are known to be inhibitors of mammalian DNA topoisomerases have pronounced and selective effects on simian virus 40 DNA replication. Ellipticine, 4'-(9-acridinylamino)methanesulfon-m-aniside, and Adriamycin blocked decatenation of newly replicated simian virus 40 daughter chromosomes in vivo. The arrested decatenation intermediates produced by these drugs contained single-strand DNA breaks. Ellipticine in particular produced these catenated dimers rapidly and efficiently. Removal of the drug resulted in rapid reversal of the block and completion of decatenation. The demonstration that these drugs interfere with decatenation suggests that they may exert their cytotoxic and antineoplastic effects by preventing the separation of newly replicated cellular chromosomes. Camptothecin rapidly breaks replication forks in growing Cairns structures. It is likely that the target of camptothecin is the "swivel" topoisomerase required for DNA replication and that it is located at or very near the replication fork in vivo. Evidence is presented that many of the broken Cairns structures are in fact half-completed sister chromatid exchanges. One pathway for the resolution of these structures is completion of the sister chromatid exchange to produce a circular head-to-tail dimer.  相似文献   

6.
Dihydrofolate reductase as a therapeutic target   总被引:9,自引:0,他引:9  
The folate antagonists are an important class of therapeutic compounds, as evidenced by their use as antiinfective, antineoplastic, and antiinflammatory drugs. Thus far, all of the clinically useful drugs of this class have been inhibitors of dihydrofolate reductase (DHFR), a key enzyme in the synthesis of thymidylate, and therefore, of DNA. The basis of the antiinfective selectivity of these compounds is clear; the antifolates trimethoprim and pyrimethamine are potent inhibitors of bacterial and protozoal DHFRs, respectively, but are only weak inhibitors of mammalian DHFRs. These species-selective agents apparently exploit the differences in the active site regions of the parasite and host enzymes. Methotrexate is the DHFR inhibitor used most often in a clinical setting as an anticancer drug and as an antiinflammatory and immunosuppressive agent. Considerable progress has been made recently in understanding the biochemical basis for the selectivity of this drug and the biochemical mechanism (or mechanisms) responsible for the development of resistance to treatment with the drug. This understanding has led to a new generation of DHFR inhibitors that are now in clinical trials.  相似文献   

7.
Review of the various drugs in current clinical use showed that over 50 of them may cause a purely sensory or mixed sensorimotor neuropathy. These include antimicrobials, such as isoniazid, ethambutol, ethionamide, nitrofurantoin, and metronidazole; antineoplastic agents, particularly vinca alkaloids; cardiovascular drugs, such as perhexiline and hydrallazine; hypnotics and psychotropics, notable methaqualone; antirheumatics, such as gold, indomethacin, and chloroquine; anticonvulsants, particularly phenytoin; and other drugs, including disulfiram, calcium carbimide, and dapsone. Patients receiving drug treatment who complain of paraesthesie, pain, muscle cramps, or other abnormal sensations and those without symptoms who are receiving drugs that are known or suspected to be neurotoxic should undergo neurological examination and studies of motor and sensory nerve conduction. This will allow the incidence of drug-induced peripheral neuropathy to be determined more precisely.  相似文献   

8.
Saccharomyces cerevisiae was used as an alternative experimental model in order to investigate the effects of antineoplastic agents on eukaryotic cells. After being exposed to the most common clinically used antineoplastic agents, yeast cells were examined under the light microscope. Folate and pyrimidine antagonists, platinum derivatives, mitomycin C, actinomycin D and bleomycin induced alterations in yeast cellular morphology, which were not observed following treatment with drugs belonging to any category other than the antineoplastics, leading to the suggestion that these alterations could potentially be used as an experimental tool in pre-screening for new chemotherapeutic leads.  相似文献   

9.
Monocytes were isolated from peripheral blood and cultured in vitro for more than 3 weeks in glass chamber slides. Phenotypically and ultrastructurally these nonadherent macrophages (NAM) appear similar to connective tissue resident macrophages. They constitutively secrete a high amount of IL-1ra and little or no IL-1 alpha or IL-1 beta. When exposed to GM-CSF, IL-2, or IFN-gamma for 24 hr, NAM become adherent and undergo dramatic morphological changes. Cytokines treatment primes NAM for increased LPS-mediated TNF production and these GM-CSF- and LPS-treated NAM are cytotoxic to WEHI 164, a TNF-sensitive target. Morphological changes and TNF production are both inhibited by antimetabolites and a variety of antineoplastic drugs. Although morphology inhibition is reversible under certain circumstances, inhibition of TNF synthesis is irreversible. These findings suggest that cytokines might play a role in differentiation and maturation of long-term cultured monocytes. Furthermore, the effects of antimetabolites and antineoplastic drugs on arresting the differentiation processes may significantly impair antitumor functions of macrophages.  相似文献   

10.
The widespread use of chemotherapy in the treatment of cancer has led to anxiety about the possible hazards to staff involved in the preparation and administration of cytotoxic agents. Careless handling of antineoplastic drugs may lead to exposure in detectable amounts by means of chemical or biological methods in the body fluids or cell samples but the information about the mutagenic effects of these agents on nurses is limited and inconsistent. DNA damage in peripheral lymphocytes of 30 professional nurses employed in the oncology departments for at least 6 months were examined by the alkaline single cell gel electrophoresis, 'COMET' technique.The results were compared to that of 30 controls with comparable age, sex and smoking habits, not practising in the chemotherapy services. Work characteristics of the exposed nurses and the use of personal protective equipment were also investigated. The DNA damage observed in the lymphocytes of the nurses was significantly higher than the controls (p<0.001). The observed DNA damage was found to be significantly lower (p<0.001) in nurses applying the necessary individual safety protections during their work. Cigarette smoking was not related to increases in DNA damage, also a significant association was not found between the duration of occupational exposure to antineoplastic drugs and the DNA damage.  相似文献   

11.
During the last years, liposomes (microparticulate phospholipid vesicles) have been used with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumor drugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.  相似文献   

12.
Almost all antineoplastic drugs are able to delay--or block--cells in a particular phase of the cell cycle. Few clinically active drugs seem to interact with the G1-states where cell growth can be arrested, although new compounds could be of interest with this respect. In contrast, most antineoplastic agents interact with DNA and/or DNA metabolism and have been shown to provoke a delay in G2. This could be the consequence of the DNA damage or of interference with controls which take place within the G2 phase.  相似文献   

13.
The interactions of three therapeutic agents, viz. the antipsychotics HPD and CPZ, and the antineoplastic anthracycline DOX, with oxidatively modified phospholipids were studied by monitoring the quenching of fluorescence of an incorporated pyrene-labeled lipid derivative. All three drugs bound avidly to the two oxidized PCs bearing either an aldehyde or carboxylic function at the end of the sn-2 nonanoyl chain, with the highest affinity measured between CPZ and the latter oxidized lipid. Subsequent dissociation of the above drugs from the oxidized lipids by DNA, acidic phospholipids, and NaCl revealed the binding of these drugs with the aldehyde lipid to be driven by hydrophobicity similarly to their binding to lysophosphatidylcholine, whereas a significant contribution of electrostatics was evident for the lipid with the carboxylic moiety. These results connect to previous experimental data, demonstrating the induction by these drugs of oxidative stress and binding to membrane phospholipids. These issues are elaborated with reference to their clinical use and side effects.  相似文献   

14.
15.
Antitumoral chemotherapeutic treatments are often impaired by innate or acquired multidrug resistance (MDR). After four decades of MDR research, having underlined its complexity, new knowledge about the mechanisms of tumor resistance to antineoplastic drugs is a prerequisite for improving chemotherapy. Following our observations with a non-pathogenic eukaryotic microorganism, Dictyostelium discoideum, I suggest that MDR in tumor cells might be the consequence of a detoxification mechanism, mediated by cell-derived microvesicles. Recently published observations with tumoral human cells support this hypothesis. First, these cell-derived vesicles might impair chemotherapeutic efficiency of many structurally-different antineoplastic agents by preventing them to reach their intracellular target, followed by their expulsion outside the tumor cells, as observed for Dictyostelium cells. Secondly, besides their newly recognized function of intercellular communication, the cell-derived vesicles might also act as intercellular transporters of multidrug resistance proteins. Experiments are suggested for checking the hypothesis of cell-derived vesicles mediating multidrug resistance.  相似文献   

16.
In this study, urinary cyclophosphamide (CP) excretion rate, as well as micronuclei (MN) in peripheral lymphocytes and in buccal epithelial cells were determined for 26 nurses handling antineoplastics and 14 referents matched for age and sex. In urine samples of 20 out of 25 exposed nurses CP excretion rate was found in a range of 0.02-9.14 microg CP/24 h. Our results of the analyses of CP in urine demonstrates that when the nurses were handling CP (and other antineoplastic drugs) this particular compound was observed in urine. The mean values (+/-SD) of MN frequencies (%) in peripheral lymphocytes from the nurses and controls were 0.61 (+/-0. 32) and 0.28 (+/-0.16), respectively (p<0.01). The mean value (+/-SD) of MN frequency (%) in buccal epithelial cells of nurses was 0.16 (+/-0.19) and also mean MN frequency in buccal epithelial cells for controls was found to be as 0.08 (+/-0.08), (p>0.05). Age, sex and smoking habits have not influenced the parameters analyzed in this study. Handling time of antineoplastics, use of protective equipment and handling frequency of drugs have no effect on urinary and cytogenetic parameters analyzed. No correlation was found between the urinary CP excretion and the cytogenetic findings in nurses. Neither could we find any relationship between two cytogenetic endpoints. Our results have identified the possible genotoxic damage of oncology nurses related to occupational exposure to at least one antineoplastic agent, which is used as a marker for drug handling. As a whole, there is concern that the present handling practices of antineoplastic drugs used in the several hospitals in Ankara will not be sufficient to prevent exposure.  相似文献   

17.
Pharmacogenomics is the study of the impact of genetic variations or genotypes of individuals on their drug response or drug metabolism. Compared to traditional genomics research,pharmacogenomic research is more closely related to clinical practice. Pharmacogenomic discoveries may effectively assist clinicians and healthcare providers in determining the right drugs and proper dose for each patient, which can help avoid side effects or adverse reactions, and improve the drug therapy. Currently, pharmacogenomic approaches have proven their utility when it comes to the use of cardiovascular drugs, antineoplastic drugs, aromatase inhibitors, and agents used for infectious diseases. The rapid innovation in sequencing technology and genome-wide association studies has led to the development of numerous data resources and dramatically changed the landscape of pharmacogenomic research. Here we describe some of these web resources along with their names, web links, main contents, and our ratings.  相似文献   

18.
Release of iron from ferritin by cardiotoxic anthracycline antibiotics   总被引:3,自引:0,他引:3  
The use of the extremely effective anthracycline antitumor drugs adriamycin and daunomycin is limited by a severe, dose-dependent cardiomyopathy. Anthracycline-induced toxicity has been proposed to involve iron-dependent oxidative damage to biological macromolecules yet little is known regarding the availability of physiologic iron. We now report that, in the presence of NADPH-cytochrome P-450 reductase, these drugs undergo redox cycling to generate superoxide which mediates a slow, reductive release of iron from ferritin, the major intracellular iron storage protein. Anaerobically, the semiquinone free radical forms of adriamycin and daunomycin catalyze a very rapid, extensive release of iron from ferritin. In contrast, diaziquone, an aziridinyl quinone antitumorigenic agent which is less cardiotoxic, is unable to release iron from ferritin. Thus, the present studies suggest that the cardiomyopathy observed with the anthracyclines, and perhaps their antineoplastic activity as well, may be related to their ability to delocalize tissue iron, thereby contributing to the formation of strong oxidants capable of damaging critical cellular constituents.  相似文献   

19.
Cancer is one of the most dreaded diseases worldwide and the incidence is on the rise in both developing and developed countries. It is treated by chemotherapy, radiotherapy and surgery. In spite of advances in treatment strategies, cancer still remains a major cause of death. Research is on for development of better drugs which are more effective and simultaneously cause fewer side effects. Plants have been used for the treatment of various ailments of man and animals since ages. They are being screened extensively to explore the possibility of development of economically viable anticancer drugs. Natural products of plant origin currently constitute a considerable proportion of commercially available antineoplastic drugs. This review gives an insight into commercially available anticancer drugs of plant origin and also patents granted to plant derived components, extracts and polyherbal formulations possessing anticancer activity. The exhaustive work reviewed here on antineoplastic activity of various plants both in vitro and experimental models throughout the world will help design further research in this field.  相似文献   

20.

Background

One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2.

Methodology and/or Principal Findings

We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 µM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 µM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 µM, significantly increased the accumulation of [3H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 µM) also significantly inhibited the efflux of paclitaxel.

Conclusions

Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号