首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Budanov AV  Karin M 《Cell》2008,134(3):451-460
The tumor suppressor p53 is activated upon genotoxic and oxidative stress and in turn inhibits cell proliferation and growth through induction of specific target genes. Cell growth is positively regulated by mTOR, whose activity is inhibited by the TSC1:TSC2 complex. Although genotoxic stress has been suggested to inhibit mTOR via p53-mediated activation of mTOR inhibitors, the precise mechanism of this link was unknown. We now demonstrate that the products of two p53 target genes, Sestrin1 and Sestrin2, activate the AMP-responsive protein kinase (AMPK) and target it to phosphorylate TSC2 and stimulate its GAP activity, thereby inhibiting mTOR. Correspondingly, Sestrin2-deficient mice fail to inhibit mTOR signaling upon genotoxic challenge. Sestrin1 and Sestrin2 therefore provide an important link between genotoxic stress, p53 and the mTOR signaling pathway.  相似文献   

2.
The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.  相似文献   

3.
In response to various stress signals, which introduce infidelity into the processes of cell growth and division, p53 initiates cell-cycle arrest, apoptosis, or senescence to maintain fidelity throughout the cell cycle. Although these functions are traditionally thought of as the major functions of the p53 protein for tumor suppression, recent studies have revealed some additional novel functions of the p53 pathway. These include the down-regulation of two central cell-growth pathways, the IGF/AKT-1 and mTOR pathways, and the up-regulation of the activities of the endosomal compartment. The IGF-1/AKT and mTOR pathways are two evolutionarily conserved pathways that play critical roles in regulation of cell proliferation, survival, and energy metabolism. In response to stress, p53 transcribes a group of critical negative regulators in these two pathways, including IGF-BP3, PTEN, TSC2, AMPK β1, and Sestrin1/2, which leads to the reduction in the activities of these two pathways. Furthermore, p53 transcribes several critical genes regulating the endosomal compartment, including TSAP6, Chmp4C, Caveolin-1, and DRAM, and increases exosome secretion, the rate of endosomal removal of growth factor receptors (e.g., EGFR) from cell surface, and enhances autophagy. These activities all function to slow down cell growth and division, conserve and recycle cellular resources, communicate with adjacent cells and dendritic cells of the immune system, and inform other tissues of the stress signals. This coordinated regulation of IGF-1/AKT/mTOR pathways and the endosomal compartment by the p53 pathway integrates the molecular, cellular, and systemic levels of activities and prevents the accumulations of errors in response to stress and restores cellular homeostasis after stress.  相似文献   

4.
Mammalian target of rapamycin, mTOR, is a major sensor of nutrient and energy availability in the cell and regulates a variety of cellular processes, including growth, proliferation, and metabolism. Loss of the tuberous sclerosis complex genes (TSC1 or TSC2) leads to constitutive activation of mTOR and downstream signaling elements, resulting in the development of tumors, neurological disorders, and at the cellular level, severe insulin/IGF-1 resistance. Here, we show that loss of TSC1 or TSC2 in cell lines and mouse or human tumors causes endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR). The resulting ER stress plays a significant role in the mTOR-mediated negative-feedback inhibition of insulin action and increases the vulnerability to apoptosis. These results demonstrate ER stress as a critical component of the pathologies associated with dysregulated mTOR activity and offer the possibility to exploit this mechanism for new therapeutic opportunities.  相似文献   

5.
Tuberous sclerosis complex 1 (TSC1) inhibits mammalian target of rapamycin (mTOR), a central promotor of cell growth and proliferation. The protein product of the TSC1 gene, hamartin (referred to as TSC1) is known to interact with Polo-like kinase 1 (Plk1) in a cell cycle regulated, phosphorylation-dependent manner. We hypothesized that the p53 target gene, Plk2, is a tumor suppressor, mediating its tumor suppressor function through interactions with TSC1 that facilitate TSC1/2 restraint of mTOR under hypoxic stress. We found that human lung tumor cells deficient in Plk2 grew larger than control tumors, and that Plk2 interacts with endogenous TSC1 protein. Additionally, C-terminal Plk2-GST fusion protein bound both TSC1 and TSC2 proteins. TSC1 levels were elevated in response to Adriamycin and cells transiently over-expressing Plk2 demonstrated decreased phosphorylation of the downstream target of mTOR, ribosomal protein p70S6 kinase during hypoxia. Plk2 levels were inversely correlated with cytoplasmic p70S6K phosphorylation. Plk2 levels did not increase in response to DNA damage (Adriamycin, CPT-11) when HCT 116 and H460 cells were exposed to hypoxia. TSC1-deficient mouse embryonic fibroblasts with TSC1 added back demonstrated decreased S6K phosphorylation, which was further decreased when Plk2 was transiently over-expressed. Interestingly, under normoxia, Plk2 deficient tumor cells demonstrated increased apoptosis in response to various chemotherapeutic agents including CPT-11 but increased resistance to apoptotic death after CPT-11 treatment under hypoxia, and tumor xenografts comprised of these Plk2-deficient cells were resistant to CPT-11. Our results point to a novel Plk2-TSC1 interaction with effects on mTOR signaling during hypoxia, and tumor growth that may enable targeting Plk2 signaling in cancer therapy.  相似文献   

6.
The IGF/mTOR pathway, which is modulated by nutrients, growth factors, energy status and cellular stress regulates aging in various organisms. SIRT1 is a NAD+ dependent deacetylase that is known to regulate caloric restriction mediated longevity in model organisms, and has also been linked to the insulin/IGF signaling pathway. Here we investigated the potential regulation of mTOR signaling by SIRT1 in response to nutrients and cellular stress. We demonstrate that SIRT1 deficiency results in elevated mTOR signaling, which is not abolished by stress conditions. The SIRT1 activator resveratrol reduces, whereas SIRT1 inhibitor nicotinamide enhances mTOR activity in a SIRT1 dependent manner. Furthermore, we demonstrate that SIRT1 interacts with TSC2, a component of the mTOR inhibitory-complex upstream to mTORC1, and regulates mTOR signaling in a TSC2 dependent manner. These results demonstrate that SIRT1 negatively regulates mTOR signaling potentially through the TSC1/2 complex.  相似文献   

7.
Yu J  Parkhitko A  Henske EP 《Autophagy》2011,7(11):1400-1401
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is activated in tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), is a master regulator of cell growth, cellular metabolism, and autophagy. Treatment of TSC and LAM patients with mTORC1 inhibitors partially decreases the size of brain and kidney tumors, and stabilizes pulmonary function. However, the tumors regrow and lung function continues to decline when treatment is discontinued. We hypothesized that dysregulation of autophagy plays a critical role in the pathogenesis of tumors with mTORC1 hyperactivation and in their response to mTORC1-targeted therapy. We found that cells lacking TSC2 have low levels of autophagy under basal and cellular stress conditions. Using genetic and pharmacological approaches, we discovered that the survival of Tsc2-deficient tumor cells is dependent on autophagy induction. Thus, autophagy inhibitors may have therapeutic potential in TSC and LAM, either as single agent therapy or in combination with mTORC1 inhibitors.  相似文献   

8.
Autophagy     
《Autophagy》2013,9(11):1400-1401
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is activated in tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), is a master regulator of cell growth, cellular metabolism, and autophagy. Treatment of TSC and LAM patients with mTORC1 inhibitors partially decreases the size of brain and kidney tumors, and stabilizes pulmonary function. However, the tumors regrow and lung function continues to decline when treatment is discontinued. We hypothesized that dysregulation of autophagy plays a critical role in the pathogenesis of tumors with mTORC1 hyperactivation and in their response to mTORC1-targeted therapy. We found that cells lacking TSC2 have low levels of autophagy under basal and cellular stress conditions. Using genetic and pharmacological approaches, we discovered that the survival of Tsc2-deficient tumor cells is dependent on autophagy induction. Thus, autophagy inhibitors may have therapeutic potential in TSC and LAM, either as single agent therapy or in combination with mTORC1 inhibitors.  相似文献   

9.
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays an essential role in cell growth control. mTOR stimulates cell growth by phosphorylating p70 ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E-binding protein 1 (4EBP1). The mTOR pathway is regulated by a wide variety of cellular signals, including mitogenic growth factors, nutrients, cellular energy levels, and stress conditions. Recent studies have proposed several mechanisms to explain how mTOR is regulated by growth factors and cellular energy levels. However, little is known as to how mTOR is regulated by stress conditions. We observed that two stress-induced proteins, RTP801/Redd1 and RTP801L/Redd2, potently inhibit signaling through mTOR. Our data support that RTP801 and RTP801L work downstream of AKT and upstream of TSC2 to inhibit mTOR functions. These results add a new dimension to mTOR pathway regulation and provide a possible molecular mechanism of how cellular stress conditions may regulate mTOR function.  相似文献   

10.
Growth-promoting and nutrient/mitogen-sensing pathways such as mTOR convert p21- and p16-induced arrest into senescence (geroconversion). We have recently demonstrated that hypoxia, especially near-anoxia, suppresses geroconversion. This gerosuppressive effect of hypoxia correlated with inhibition of the mTOR/S6K pathway but not with modulation of the LKB1/AMPK/eEF2 pathway. Here we further show that mTOR inhibition is required for gerosuppression by hypoxia, at least in some cellular models, because depletion of TSC2 abolished mTOR inhibition and gerosupression by hypoxia. Also, in two cancer cell lines resistant to inhibition of mTOR by both p53 and hypoxia, hypoxia did not suppress geroconversion. Therefore, the effects of hypoxia on the oxygen-sensing mTOR pathway and geroconversion are cell type-specific. We also briefly discuss replicative senescence, organismal aging and free radical theory.  相似文献   

11.
Growth-promoting and nutrient/mitogen-sensing pathways such as mTOR convert p21- and p16-induced arrest into senescence (geroconversion). We have recently demonstrated that hypoxia, especially near-anoxia, suppresses geroconversion. This gerosuppressive effect of hypoxia correlated with inhibition of the mTOR/S6K pathway but not with modulation of the LKB1/AMPK/eEF2 pathway. Here we further show that mTOR inhibition is required for gerosuppression by hypoxia, at least in some cellular models, because depletion of TSC2 abolished mTOR inhibition and gerosupression by hypoxia. Also, in two cancer cell lines resistant to inhibition of mTOR by both p53 and hypoxia, hypoxia did not suppress geroconversion. Therefore, the effects of hypoxia on the oxygen-sensing mTOR pathway and geroconversion are cell type-specific. We also briefly discuss replicative senescence, organismal aging and free radical theory.  相似文献   

12.
mTORC1 and p53     
A balance must be struck between cell growth and stress responses to ensure that cells proliferate without accumulating damaged DNA. This balance means that optimal cell proliferation requires the integration of pro-growth and stress-response pathways. mTOR (mechanistic target of rapamycin) is a pleiotropic kinase found in complex 1 (mTORC1). The mTORC1 pathway governs a response to mitogenic signals with high energy levels to promote protein synthesis and cell growth. In contrast, the p53 DNA damage response pathway is the arbiter of cell proliferation, restraining mTORC1 under conditions of genotoxic stress. Recent studies suggest a complicated integration of these pathways to ensure successful cell growth and proliferation without compromising genome maintenance. Deciphering this integration could be key to understanding the potential clinical usefulness of mTORC1 inhibitors like rapamycin. Here we discuss how these p53-mTORC1 interactions might play a role in the suppression of cancer and perhaps the development of cellular senescence and organismal aging.  相似文献   

13.
《Autophagy》2013,9(4):553-554
mTOR is a major biological switch, coordinating an adequate response to changes in energy uptake (amino acids, glucose), growth signals (hormones, growth factors) and environmental stress. mTOR kinase is highly conserved through evolution from yeast to man and in both cases, controls autophagy and cellular translation in response to nutrient stress. mTOR kinase is the catalytic component of two distinct multiprotein complexes called mTORC1 and mTORC2. In addition to mTOR, mTORC1 contains Raptor, mLST8 and PRAS40. mTORC2 contains mTOR, Rictor, mSIN1 and Protor-1. mTORC1 activates p70S6K, which in turn phosphorylates the ribosomal protein S6 and 4E-BP1, both involved in protein translation. mTORC2 activates AKT directly by phosphorylating Serine 473. pAKT(S473) phosphorylates TSC2 (tuberin) and inactivates it, preventing its association with TSC1 (hamartin) and the inhibition of Rheb, an activator of mTOR. pAKT also phosphorylates PRAS40, releasing it from the mTORC1 complex, increasing its kinase activity. Finally, AKT regulates FOXO3 phosphorylation, sequestering it in the cytosol in an inactive state.  相似文献   

14.
The mammalian target of rapamycin (mTOR) coordinates cell growth with the growth factor and nutrient/energy status of the cell. The phosphatidylinositol 3-kinase-AKT pathway is centrally involved in the transmission of mitogenic signals to mTOR. Previous studies have shown that mTOR is a direct substrate for the AKT kinase and identified Ser-2448 as the AKT target site in mTOR. In this study, we demonstrate that rapamycin, a specific inhibitor of mTOR function, blocks serum-stimulated Ser-2448 phosphorylation and that this drug effect is not explained by the inhibition of AKT. Furthermore, the phosphorylation of Ser-2448 was dependent on mTOR kinase activity, suggesting that mTOR itself or a protein kinase downstream from mTOR was responsible for the modification of Ser-2448. Here we show that p70S6 kinase phosphorylates mTOR at Ser-2448 in vitro and that ectopic expression of rapamycin-resistant p70S6 kinase restores Ser-2448 phosphorylation in rapamycin-treated cells. In addition, we show that cellular amino acid status, which modulates p70S6 kinase (S6K1) activity via the TSC/Rheb pathway, regulates Ser-2448 phosphorylation. Finally, small interfering RNA-mediated depletion of p70S6 kinase reduces Ser-2448 phosphorylation in cells. Taken together, these results suggest that p70S6 kinase is a major effector of mTOR phosphorylation at Ser-2448 in response to both mitogen- and nutrient-derived stimuli.  相似文献   

15.
TSC2: filling the GAP in the mTOR signaling pathway   总被引:20,自引:0,他引:20  
The tumor-suppressor proteins TSC1 and TSC2 are associated with an autosomal dominant disorder known as tuberous sclerosis complex (TSC). TSC1 and TSC2 function as a heterodimer to inhibit cell growth and proliferation. Another protein, mTOR (mammalian target of rapamycin), is regarded as a central controller of cell growth in response to growth factors, cellular energy and nutrient levels. Recent breakthroughs in TSC research link the TSC1/2 heterodimer protein to the mTOR signaling network. It has recently been shown that TSC2 has GTPase-activating protein (GAP) activity towards the Ras family small GTPase Rheb (Ras homolog enriched in brain), and TSC1/2 antagonizes the mTOR signaling pathway via stimulation of GTP hydrolysis of Rheb. Thus, TSC1/2 and Rheb have pivotal roles in mediating growth factors, nutrient and energy sensing signals to mTOR-dependent targets. These discoveries lend new insight into TSC pathogenesis.  相似文献   

16.
17.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

18.
TSC2 mediates cellular energy response to control cell growth and survival   总被引:58,自引:0,他引:58  
Inoki K  Zhu T  Guan KL 《Cell》2003,115(5):577-590
Mutations in either the TSC1 or TSC2 tumor suppressor gene are responsible for Tuberous Sclerosis Complex. The gene products of TSC1 and TSC2 form a functional complex and inhibit the phosphorylation of S6K and 4EBP1, two key regulators of translation. Here, we describe that TSC2 is regulated by cellular energy levels and plays an essential role in the cellular energy response pathway. Under energy starvation conditions, the AMP-activated protein kinase (AMPK) phosphorylates TSC2 and enhances its activity. Phosphorylation of TSC2 by AMPK is required for translation regulation and cell size control in response to energy deprivation. Furthermore, TSC2 and its phosphorylation by AMPK protect cells from energy deprivation-induced apoptosis. These observations demonstrate a model where TSC2 functions as a key player in regulation of the common mTOR pathway of protein synthesis, cell growth, and viability in response to cellular energy levels.  相似文献   

19.
Significant discoveries have recently contributed to our knowledge of intracellular growth factor and nutrient signaling via mTOR (mammalian target of rapamycin). This signaling pathway is essential in cellular metabolism and cell survival by enhancing protein translation through phosphorylation of 4EBP-1 and p70S6K. Growth factors like insulin-like growth factor-I induce mTOR to prevent cell death during cellular stress. Agents targeting mTOR are of major interest as anticancer agents. We show here, using human breast cancer cells, that certain types of stress activate mTOR leading to 4E-BP1 and p70S6K phosphorylation. UV treatment increased phosphorylation of the translation inhibitor eIF2alpha, suggesting a potential mechanism for UV activation of Akt and mTOR. c-Myc, a survival protein regulated by cap-dependent protein translation, increased with IGF-I treatment, but this response was not inhibited by rapamycin. Additionally, UV treatment potently increased c-Myc degradation, which was reduced by co-treatment with the proteasomal inhibitor, MG-132. Together, these data suggest that protein translation does not strongly mediate cell survival in these models. In contrast, the phosphorylation status of retinoblastoma protein (pRB) was mediated by mTOR through its inhibitory effects on phosphatase activity. This effect was most notable during DNA damage and rapamycin treatment. Hypophosphorylated pRB was susceptible to inactivation by caspase-mediated cleavage, resulting in cell death. Reduction of pRB expression inhibited IGF-I survival effects. Our data support an important role of phosphatases and pRB in IGF-I/mTOR-mediated cell survival. These studies provide new directions in optimizing anticancer efficacy of mTOR inhibitors when used in combination with DNA-damaging agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号