首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Recent papers by a number of philosophers have been concerned with the question of whether natural selection is a causal process, and if it is, whether the causes of selection are properties of individuals or properties of populations. I shall argue that much confusion in this debate arises because of a failure to distinguish between causal productivity and causal relevance. Causal productivity is a relation that holds between events connected via continuous causal processes, while causal relevance is a relationship that can hold between a variety of different kinds of facts and the events that counterfactually depend upon them. I shall argue that the productive character of natural selection derives from the aggregation of individual processes in which organisms live, reproduce and die. At the same time, a causal explanation of the distribution of traits will necessarily appeal both to causally relevant properties of individuals and to causally relevant properties that exist only at the level of the population.
Stuart GlennanEmail:
  相似文献   

2.
3.
非平衡群体基因变异测量的Shannon信息量方法   总被引:14,自引:2,他引:14  
在Shannon信息量的基础上,对非平衡群体建立了群体基因型相对信息量S′(G),纯合体相对信息量S′J(G)、杂合体相对信息量S′H(G)的概念,并赋予它们以遗传学意义,与基因一致度J和基因多样度D进行了理论比较,结果表明,二者在数量规律上有很好的一致性,但又是相对独立的指标体系,且各相对信息量还有新的内涵。S′(G)既能表征基因变异,又能反映基因型水平上的遗传变异,S′J(G)主要反映纯合体的遗传变异,S′H(G)主要反映杂合体的遗传变异,各相对信息量既可反映群体的遗传变异程度,又能比较不同位点间的遗传变异程度。  相似文献   

4.
‘Natural selection’ is, it seems, an ambiguous term. It is sometimes held to denote a consequence of variation, heredity, and environment, while at other times as denoting a force that creates adaptations. I argue that the latter, the force interpretation, is a redundant notion of natural selection. I will point to difficulties in making sense of this linguistic practise, and argue that it is frequently at odds with standard interpretations of evolutionary theory. I provide examples to show this; one example involving the relation between adaptations and other traits, and a second involving the relation between selection and drift.  相似文献   

5.
We exlored indirectly, the operation of sexual selection in subterranean mole rats of the Spalax ebrenbergi superspecies in Israel comprising four chromosomal species, 2n = 52, 54, 58 and 60. We reanalzed two previously available data sets of 1. body size differentiation (Nevo et al. 1986a) and 2. the intensity of “Total Aggression” in mole rats (Nevo et al. 1986b). We correlated the mean size difference between the two sexes, in each of the 12 populations of the chromosomal species, with the mean level of agression, and with climatic factors, both displaying significant correlations. The results indicated that for 2n = 52, 54, 58 and 60, the population averae difference in body weight between the sexes decreases southward as follows: 37.7g (30.8 % of females body weight), 39.3g(29.0%) 26.3g(22.8%) and 20.3g (19.3%), respectively. We interpret the higher body size diherential ketween the sexes in the north as due to sexual selection.  相似文献   

6.
This is the second in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and to their relations to the thermodynamics of computation. In the first paper of the series, it was shown that a general-form dimensional argument from the second law of thermodynamics captures a number of scaling relations governing growth and development across many domains of life. It was also argued that models of physiology based on reversible transformations provide sensible approximations within which the second-law scaling is realized. This paper provides a formal basis for decomposing general cyclic, fixed-temperature chemical reactions, in terms of the chemical equivalent of Carnot's cycle for heat engines. It is shown that the second law relates the minimal chemical work required to perform a cycle to the Kullback-Leibler divergence produced in its chemical output ensemble from that of a Gibbs equilibrium. Reversible models of physiology are used to create reversible models of natural selection, which relate metabolic energy requirements to information gain under optimal conditions. When dissipation is added to models of selection, the second-law constraint is generalized to a relation between metabolic work and the combined energies of growth and maintenance.  相似文献   

7.
The explanatory role of natural selection is one of the long-term debates in evolutionary biology. Nevertheless, the consensus has been slippery because conceptual confusions and the absence of a unified, formal causal model that integrates different explanatory scopes of natural selection. In this study we attempt to examine two questions: (i) What can the theory of natural selection explain? and (ii) Is there a causal or explanatory model that integrates all natural selection explananda? For the first question, we argue that five explananda have been assigned to the theory of natural selection and that four of them may be actually considered explananda of natural selection. For the second question, we claim that a probabilistic conception of causality and the statistical relevance concept of explanation are both good models for understanding the explanatory role of natural selection. We review the biological and philosophical disputes about the explanatory role of natural selection and formalize some explananda in probabilistic terms using classical results from population genetics. Most of these explananda have been discussed in philosophical terms but some of them have been mixed up and confused. We analyze and set the limits of these problems.  相似文献   

8.
 The regulatory region of the corticotropin-releasing hormone (CRH) is highly conserved across species and plays a crucial role in the response of the organism to stress. Release of CRH initiates a cascade of events leading to the release of cortisol and the regulation of inflammatory and immune events. In this report we describe polymorphisms in the 5′ regulatory region of the CRH gene in humans. We studied the distribution of CRH alleles in three different African populations, in white UK Caucasoids, and in a Chinese population. In the African and UK populations we found three new polymorphisms which cosegregated, resulting in two alleles, A1 and A2. Gene frequencies for A1 and A2 were extremely divergent between the African and the UK populations. The African A1 frequency ranged from 0.27–0.3, while the UK Caucasoid frequency was 0.9. Compound alleles could be assigned by taking into account the previously described biallelic polymorphism at position 225 in the CRH promoter. The A2B1 compound allele is the commonest in contemporary African human populations (allele frequency range 0.44–0.61) and was the only allele observed in a population of chimpanzees from Sierra Leone. Wright's FST for the A2B1 allele over the four sampled populations was 0.612, a value exceeded in human populations only by loci which have apparently been subject to natural selection. Taken together, these findings support A2B1 as the ancestral allele and suggest that the CRH genomic region may have been subject to strong disruptive selection throughout human evolution. Received: 29 October 1998 / Revised: 24 March 1999  相似文献   

9.
Understanding how gene expression is translated to phenotype is central to modern molecular biology,and the success is contingent on the intrinsic tractability of the specific traits under examination.However, an a priori estimate of trait tractability from the perspective of gene expression is unavailable.Motivated by the concept of entropy in a thermodynamic system, we here propose such an estimate(S_T)by gauging the number(N) of expression states that underlie the same trait abnormality, with large S_T corresponding to large N. By analyzing over 200 yeast morphological traits, we show that S_T predicts the tractability of an expression-trait relationship. We further show that S_T is ultimately determined by natural selection, which builds co-regulated gene modules to minimize possible expression states.  相似文献   

10.
Most evolutionary biologists cherish Darwin's theory of natural selection (NS) as the process of adaptive evolution more than 140 years after publication of his first book on the subject. However, in the past few decades the study of self-organization (SO) in complex dynamical systems has suggested that adaptation may occur through intrinsic reorganization without NS. In this study, we attempt to describe the logical framework that relates the general process of SO to the specific process of NS. We describe NS as a mechanism that coordinates the coevolution of species in an ecosystem to effectively capture, process and dissipate solar energy into the earth's shadow. Finally, we conclude that NS is an emergent process founded on the same thermodynamic imperatives that are thought to underlie all SO. This perspective suggests that the theory of self-organizing systems offers a broader physical context in which to understand the process of NS, rather than contesting it. It even suggests the possibility that there may be a physical basis for understanding the origin of the process of NS. Rather than being merely a fluke of nature, the origin of NS that may be driven by energy flows across gradients.  相似文献   

11.
Thomas Belt suggested that the frequent limitation of mimicry in butterflies to the female resulted from sexual selection. Because female butterflies store sperm they can be fully fertile after only one mating; the reproductive success of a male is proportional to the number of times he mates. Sexual selection is therefore much stronger in males than females, with selection coefficients being greater by a small multiple of the number of times a female is courted during her life (long-lived species) or of the reciprocal of the female mortality rate between courtships (short-lived species). As butterflies of both sexes respond to colour when courting, sexual selection resists colour changes especially strongly in males. As a result, genes conferring new mimetic colour patterns can often become established in a butterfly population much more readily if their expression is initially limited to females; when the population size of a Batesian mimic, its model, and its predator fluctuates, such sex-limited genes have an enhanced probability of ultimate fixation in the population, and a reduced chance of loss; this effect is accentuated by the selection of modifiers which improve the mimicry. When the establishment of unimodal mimicry (expressed in both sexes) is favoured in a Batesian mimic, the gene tends to rise to an equilibrium frequency at which modifiers suppressing the expression of the mimicry only in males and'modifiers enhancing the mimicry only in females are favoured. The outcome is female-limited mimicry, or unimodal mimicry with better mimicry in the females, the males either retaining some of their sexual colour or the selective behaviour of the females becoming altered. In a Muellerian mimic there is no such equilibrium and selection ultimately favours expression of mimicry in both sexes and an appropriate alteration in the courtship responses. Hence Muellerian mimicry is seldom female-limited. Exceptional cases appear to result from the sexes flying in separate habitats. The genetical evidence in Papilio and Heliconius favours initial limitation of expression over subsequent modification as the usual basis for female-limited mimicry. Other explanations of female-limited mimicry can be found wanting in various ways; a higher predation rate on females could produce sex-limitation, but is probably not a strong factor. But the greater variability of the female in Lepidoptera may indicate lesser developmental stability, which could result in greater penetrance of mutants in the female, and hence account for the initial female-limitation. At very high densities of a mimetic species which has no non-mimetic form, mimicry tends to deteriorate more rapidly in a unimodal than in an otherwise identical sex-limited species. Although by itself this would equally favour male-limitation, and hence cannot explain the predominance of female-limitation, this effect may over evolutionary time be causing a slight increase in the proportion of sex-limited species among mimics. The stability of some mimetic polymorphisms is investigated by linear approximation: in some instances a stable equilibrium can be changed into an oscillating equilibrium by changes in the population size.  相似文献   

12.
 We modify a simple mathematical model for natural selection originally formulated by Robert M. May in 1983 by permitting one homozygote to have a larger selective advantage when rare than the other, and show that the new model exhibits dynamical chaos. We determine an open region of parameter space associated with homoclinic points, and prove that there are infinite sequences of period-doubling bifurcations along selected paths through parameter space. We also discuss the possibility of chaos arising from imbalance in the homozygote fitnesses in more realistic biological situations, beyond the constraints of the model. Received 3 February 1995; received in revised form 1 November 1995  相似文献   

13.
14.
D. Pilson 《Oecologia》2000,122(1):72-82
Plant fitness is strongly affected by flowering phenology, and there are several ecological factors that are thought to shape the distribution of flowering times. One relatively underexamined factor is the timing and intensity of attack by herbivores that feed on flowers or developing seeds. This study tests the hypothesis that herbivores that feed on developing seeds of wild sunflower, Helianthus annuus (Asteraceae), impose selection on flowering phenology. First, the study population was found to contain genetic variation for mean date of flowering, so this trait could evolve if natural selection were operating. Next, the phenological pattern of abundance of five seed-feeding herbivores was documented. Damage by three herbivores, Haplorhynchites aeneus (Cucurlionidae), the head-clipping weevil, Homoeosoma electellum (Lepidoptera: Pyralidae), the sunflower moth, and Suleima helianthana (Lepidoptera: Tortricidae), the sunflower bud moth, was highest early in the flowering season, and declined as the season progressed. Damage by one herbivore, the seed fly Gymnocarena diffusa (Diptera: Tephrididae), was lowest early in the flowering season and increased as the season progressed. Finally, damage by two seed weevils, Smicronyx fulvus and S. sordidus (Curculionidae), whose damage was not distinguished, was constant through the flowering period. Third, damage by Haplorhynchites, Homoeosoma, and Suleima was found to be detrimental to plant fitness, suggesting that plants that flower when these herbivores are not abundant should have higher fitness. Finally, two phenotypic selection analyses were performed. The first included damage by Homoeosoma and Suleima, as well as flowering date, leaf area, and inflorescence diameter, as characters predicting plant fitness. In this analysis directional selection was found to act to decrease damage by the two herbivores, but did not act on flowering date. The second selection analysis was identical except that damage by the two herbivores was not included. In this analysis significant directional selection was found to favor later-flowering plants. Comparison of these two analyses suggests that all selection on flowering phenology is attributable to damage by Homoeosoma and Suleima: plants that flower later avoid damage by these two herbivores. While other influences on flowering phenology, such as pollination, mate availability, and seasonality, have been well documented, this study is one of few to demonstrate natural selection on flowering phenology that is a direct consequence of insect attack. Received: 17 November 1998 / Accepted: 18 July 1999  相似文献   

15.
We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.  相似文献   

16.
Fernando C  Rowe J 《Bio Systems》2008,91(2):355-373
We propose conditions in which an autonomous agent could arise, and increase in complexity. It is assumed that on the primitive Earth there arose a recycling flow-reactor containing spontaneously formed oil droplets or lipid aggregates. These droplets grew at a basal rate by simple incorporation of lipid phase material, and divided by external agitation. This type of system was able to implement a natural selection algorithm once heredity was added. Macroevolution became possible by selection for rarely occurring chemical reactions that produced holistic autocatalytic molecular replicators (contained within the aggregate) capable of doubling at least as fast as the lipid aggregate, and which were also capable of benefiting the growth of its lipid aggregate container. No nucleotides or monomers capable of modular heredity were required at the outset. To explicitly state this hypothesis, a computer model was developed that employed an artificial chemistry, exhibiting conservation of mass and energy, incorporated within each individual of a population of lipid aggregates. This model evolved increasingly complex self-sustaining processes of constitution, a result that is also expected in real chemistry.  相似文献   

17.
This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.  相似文献   

18.
Summary Four lines of Drosophila melanogaster previously selected for a stabilized phenotype of two extra dorsocentral bristles were examined for 20 generations of canalizing selection and relaxation of selection. A substantial frequency of flies with either two anterior or two posterior extra bristles was maintained in the relaxed lines. These patterns were the only ones tolerated by natural selection, i.e., the only symmetric ones. It was concluded that anterior and posterior dorsocentral bristles are two independent development structures, and the results are discussed in relation to two proposed genetic systems for bristle determination.  相似文献   

19.
In this report, we examine the hypothesis that the drivers of latitudinal selection observed in the eastern US Drosophila melanogaster populations are reiterated within seasons in a temperate orchard population in Pennsylvania, USA. Specifically, we ask whether alleles that are apparently favoured in northern populations are also favoured early in the spring, and decrease in frequency from the spring to autumn with the population expansion. We use SNP data collected for 46 metabolic genes and 128 SNPs representing the central metabolic pathway and examine for the aggregate SNP allele frequencies whether the association of allele change with latitude and that with increasing days of spring–autumn season are reversed. Testing by random permutation, we observe a highly significant negative correlation between these associations that is consistent with this expectation. This correlation is stronger when we confine our analysis to only those alleles that show significant latitudinal changes. This pattern is not caused by association with chromosomal inversions. When data are resampled using SNPs for amino acid change the relationship is not significant but is supported when SNPs associated with cis-expression are only considered. Our results suggest that climate factors driving latitudinal molecular variation in a metabolic pathway are related to those operating on a seasonal level within populations.  相似文献   

20.
Directional selection for plant traits associated with resistance to herbivory tends to eliminate genetic variation in such traits. On the other hand, balancing selection arising from trade-offs between resistance and growth or spatially variable selection acts against the elimination of genetic variation. We explore both the amount of genetic variation and variability of natural selection for growth and concentration of phenolic secondary compounds, phlorotannins, in the brown alga Fucus vesiculosus. We measured variation in selection at two growing depths and two levels of nutrient availability in algae that had faced two kinds of past growing environments. Genetic variation was low for growth but high for phlorotannins. The form and strength of selection for both focal traits depended on the past growing environment of the algae. We found strong directional selection for growth rate in algae previously subjected to higher ultraviolet radiation, but not in algae previously subjected to higher nutrient availability. Stabilizing selection for growth occurred especially in the deep growing environment. Selection for phlorotannins was generally weak, but in some past-environment-current-environment combinations we detected either directional selection against phlorotannins or stabilizing selection. Thus, phlorotannins are not selectively neutral but affect the fitness of F. vesiculosus. In particular, there may be a fitness cost of producing phlorotannins, but the realization of such a cost varies from one environment to another. Genetic correlations between selective environments were high for growth but nonexistent for phlorotannins, emphasizing the high phenotypic plasticity of phlorotannin production. The highly heterogeneous selection, including directional, stabilizing, and spatially variable selection as well as temporal change in selection due to responses to past environmental conditions, probably maintains a high amount of genetic variation in phlorotannins. Such variation provides the potential for rapid evolutionary response of phlorotannins under directional selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号