首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The endothelium is a key constituent of the vascular wall, being actively involved in maintaining the structural integrity and proper functioning of blood vessels. Hyperlipidemia, diabetes, hypertension, smoking and aging are important risk factors for the dysfunction of endothelial cells (EC). Circulating lipoproteins (Lp) synthesized and secreted from the intestine or liver have an important role in supplying peripheral tissues with fatty acids from triglyceride rich lipoproteins (TGRLp) for energy production or storage, and cholesterol from low density lipoproteins (LDL) or high density lipoproteins (HDL) for the synthesis of cellular membranes and steroid hormones. Under pathological conditions, Lp may suffer alterations in concentration and composition and become aggressors for EC. Modified LDL, remnant Lp, TGRLp lipolysis products, dysfunctional HDL are involved in the changes induced in EC morphology (reduced glycocalyx, overdeveloped endoplasmic reticulum, Golgi apparatus and basement membrane), loose intercellular junctions, increased oxidative and inflammatory stress, nitric oxide/redox imbalance, excess Lp transport and storage, as well as loss of anti-thrombotic properties, all of these being characteristics of endothelial dysfunction. Normal HDL are able to counteract the harmful effects of atherogenic Lp in EC but under persistent pathological conditions they lose the protective properties and become pro-atherogenic. This review summarises recent advances in understanding the role of Lp in the induction of endothelial dysfunction and the initiation and progression of atherosclerotic lesions. Its main focus is the antagonistic role of atherogenic Lp (LDL, VLDL, dysfunctional HDL) versus anti-atherogenic Lp (HDL), also pointing out the potential targets for arresting or reversing this process.  相似文献   

3.
Atherosclerosis is the main pathological basis of cardiovascular disease and involves damage to vascular endothelial cells (ECs) that results in endothelial dysfunction (ED). The vascular endothelium is the key to maintaining blood vessel health and homeostasis. ED is a complex pathological process involving inflammation, shear stress, vascular tone, adhesion of leukocytes to ECs, and platelet aggregation. The activation of P2X4, P2X7, and P2Y2 receptors regulates vascular tone in response to shear stress, while activation of the A2A, P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y12 receptors promotes the secretion of inflammatory cytokines. Finally, P2X1, P2Y1, and P2Y12 receptor activation regulates platelet activity. These purinergic receptors mediate ED and participate in atherosclerosis. In short, P2X4, P2X7, P2Y1, and P2Y12 receptors are potential therapeutic targets for atherosclerosis.  相似文献   

4.
5.
Multiparity is associated with increased risk of cardiovascular disease. We tested whether multiparity induces oxidative stress in rat vascular tissue. Coronary arteries and thoracic aorta were isolated from multiparous and age-matched virgin rats. Relaxation to ACh and sodium nitroprusside (SNP) was measured by wire myography. We also tested the effect of the superoxide dismutase mimetic MnTE2PyP (30 microM), the NADPH oxidase inhibitor apocynin (10 microM), and the peroxynitrite scavenger FeTPPs (10 microM) on ACh-mediated relaxation in coronary arteries. Vascular superoxide anion was measured using the luminol derivative L-012 and nitric oxide (NO) generation by the Griess reaction. Multiparity reduced maximal response and sensitivity to ACh in coronary arteries [maximal relaxation (E(max)): multiparous 49+/-3% vs. virgins 95%+/-3%; EC(50): multiparous 135+/-1 nM vs. virgins 60+/-1 nM], and in aortic rings (E(max): multiparous 38+/-3% vs. virgins 79+/-4%; EC(50): multiparous 160+/-2 nM vs. virgins 90+/-3 nM). Coronary arteries from the two groups relaxed similarly to SNP. Superoxide anions formation was significantly higher in both coronary arteries (2.8-fold increase) and aorta (4.1-fold increase) from multiparous rats compared with virgins. In multiparous rats, incubation with MnTE2PyP, apocynin, and FeTPPs improved maximal relaxation to ACh (MnTE2PyP: 74+/-5%; vehicle: 41+/-5%; apocynin: 73+/-3% vs. vehicle: 41+/-3%; FeTPPs: 72+/-3% vs. vehicle: 46+/-3%) and increased sensitivity (EC(50): MnTE2PyP: 61+/-0.5 nM vs. vehicle: 91+/-1 nM; apocynin: 45+/-3 nM vs. vehicle: 91+/-6 nM; FeTPP: 131 +/- 2 nM vs. vehicle: 185+/-1 nM). Multiparity also reduced total nitrate/nitrite levels (multiparous: 2.5+/-2 micromol/mg protein vs. virgins: 7+/-1 micromol/mg protein) and endothelial nitric oxide synthase protein levels (multiparous: 0.53+/-0.1 protein/actin vs. virgins: 1.0+/-0.14 protein/actin). These data suggest that multiparity induces endothelial dysfunction through decreased NO bioavailability and increased reactive oxygen species formation.  相似文献   

6.
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease, including ischemic heart disease, stroke, and peripheral vascular disease. Mutations in the enzymes responsible for homocysteine metabolism, particularly cystathionine beta-synthase (CBS) or 5,10-methylenetetrahydrofolate reductase (MTHFR), result in severe forms of HHcy. Additionally, nutritional deficiencies in B vitamin cofactors required for homocysteine metabolism, including folic acid, vitamin B6 (pyridoxal phosphate), and/or B12 (methylcobalamin), can induce HHcy. Studies using animal models of genetic- and diet-induced HHcy have recently demonstrated a causal relationship between HHcy, endothelial dysfunction, and accelerated atherosclerosis. Dietary enrichment in B vitamins attenuates these adverse effects of HHcy. Although oxidative stress and activation of proinflammatory factors have been proposed to explain the atherogenic effects of HHcy, recent in vitro and in vivo studies demonstrate that HHcy induces endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR). This review summarizes the current role of HHcy in endothelial dysfunction and explores the cellular mechanisms, including ER stress, that contribute to atherothrombosis.  相似文献   

7.
Endothelium-derived hyperpolarizing factor (EDHF) plays a crucial role in modulating vasomotor tone, especially in microvessels when nitric oxide-dependent control is compromised such as in diabetes. Epoxyeicosatrienoic acids (EETs), potassium ions (K+), and hydrogen peroxide (H2O2) are proposed as EDHFs. However, the identity (or identities) of EDHF-dependent endothelial dilators has not been clearly elucidated in diabetes. We assessed the mechanisms of EDHF-induced vasodilation in wild-type (WT, normal), db/db (advanced type 2 diabetic) mice, and db/db mice null for TNF (dbTNF-/dbTNF-). In db/db mice, EDHF-induced vasodilation [ACh-induced vasodilation in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME, 10 micromol/l) and prostaglandin synthase inhibitor indomethacin (Indo, 10 mumol/l)] was diminished after the administration of catalase (an enzyme that selectively dismutates H2O2 to water and oxygen, 1,000 U/ml); administration of the combination of charybdotoxin (a nonselective blocker of intermediate-conductance Ca2+-activated K+ channels, 10 micromol/l) and apamin (a selective blocker of small-conductance Ca2+-activated K+ channels, 50 micromol/l) also attenuated EDHF-induced vasodilation, but the inhibition of EETs synthesis [14,15-epoxyeicosa-5(Z)-enoic acid; 10 mumol/l] did not alter EDHF-induced vasodilation. In WT controls, EDHF-dependent vasodilation was significantly diminished after an inhibition of K+ channel, EETs synthesis, or H2O2 production. Our molecular results indicate that mRNA and protein expression of interleukin-6 (IL-6) were greater in db/db versus WT and dbTNF-/dbTNF- mice, but neutralizing antibody to IL-6 (anti-IL-6; 0.28 mg.ml(-1).kg(-1) ip for 3 days) attenuated IL-6 expression in db/db mice. The incubation of the microvessels with IL-6 (5 ng/ml) induced endothelial dysfunction in the presence of l-NAME and Indo in WT mice, but anti-IL-6 restored ACh-induced vasodilation in the presence of L-NAME and Indo in db/db mice. In db(TNF-)/db(TNF-) mice, EDHF-induced vasodilation was greater and comparable with controls, but IL-6 decreased EDHF-mediated vasodilation. Our results indicate that EDHF compensates for diminished NO-dependent dilation in IL-6-induced endothelial dysfunction by the activation of H2O2 or a K+ channel in type 2 diabetes.  相似文献   

8.

Background

Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO) bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and the development of atherosclerosis.

Methodology/Principal Findings

Transgenic mice on a C57BL/6 background with endothelial-specific overexpression of human arginase II (hArgII) gene under the control of the Tie2 promoter were produced. The hArgII mice had elevated tissue arginase activity except in liver and in resident peritoneal macrophages, confirming endothelial specificity of the transgene. Using small-vessel myography, aorta from these mice exhibited endothelial dysfunction when compared to their non-transgenic littermate controls. The blood pressure of the hArgII mice was 17% higher than their littermate controls and, when crossed with apoE −/− mice, hArgII mice had increased aortic atherosclerotic lesions.

Conclusion

We conclude that overexpression of arginase II in the endothelium is detrimental to the cardiovascular system.  相似文献   

9.
We tested the hypothesis that endothelial cell nitric oxide synthase (ecNOS) mediates the tumor necrosis factor (TNF)-alpha-induced increase in nitric oxide (NO) and albumin permeability in pulmonary microvessel endothelial monolayers (PEM). PEM lysates were analyzed for ecNOS mRNA (RT-PCR), ecNOS protein (Western immunoblot), NO levels (NO, the oxidation product of NO), and barrier function (albumin clearance rate). PEM were incubated with TNF (50 ng/ml) for 0.5, 2, 4, and 24 h. TNF induced a decrease in ecNOS mRNA at 2, 4, and 24 h. TNF induced an acute (0.5 h) increase followed by a protracted decrease (4-24 h) in ecNOS protein levels. The other NOS isotypes, inducible and brain NOS, could not be detected in the PEM using RT-PCR and Western blot assay. ecNOS antisense oligonucleotide decreased ecNOS protein, which prevented the increase in NO and albumin permeability at TNF-4 h. Spermine-NONOATE, the NO agonist, ablated the protective effect of ecNOS antisense oligonucleotide on albumin permeability in response to TNF-4 h. However, ecNOS antisense oligonucleotide had no effect on the TNF-induced increase in albumin permeability at 24 h despite prevention of the increase in NO. The data indicate that the isotype ecNOS mediates generation of NO and the acute (i.e., 4 h) barrier dysfunction; however, the prolonged (i.e., 24 h) increase in the TNF-induced increase in endothelial permeability is independent of NO.  相似文献   

10.
Cardiovascular event rates are markedly increased in rheumatoid arthritis (RA), and RA atherogenesis remains poorly understood. The relative contributions of traditional and nontraditional risk factors to cardiovascular disease in RA await elucidation. The present study comprises three components. First, we compared biomarkers of endothelial dysfunction (vascular cell adhesion molecule [VCAM]-1, intercellular adhesion molecule [ICAM]-1 and endothelial leucocyte adhesion molecule [ELAM]-1) in 74 RA patients and 80 healthy control individuals before and after controlling for traditional and nontraditional cardiovascular risk factors, including high-sensitivity C-reactive protein (hs-CRP), IL-1, IL-6 and tumor necrosis factor-α. Second, we investigated the potential role of an extensive range of patient characteristics in endothelial dysfunction in the 74 RA patients. Finally, we assessed associations between biomarkers of endothelial dysfunction and ultrasonographically determined common carotid artery intima–media thickness and plaque in RA. The three biomarkers of endothelial dysfunction, as well as hs-CRP, IL-1, IL-6 and tumor necrosis factor-α, were higher in patients than in control individuals (P < 0.0001). Patients were also older, exercised less and had a greater waist circumference, blood pressure and triglyceride levels (P ≤ 0.04). Five patients had diabetes. Differences in endothelial function were no longer significant between patients and controls (P = 0.08) only after both traditional and nontraditional cardiovascular risk factors were controlled for. In the 74 RA patients, IL-6 predicted levels of all three biomarkers (P ≤ 0.03), and rheumatoid factor titres and low glomerular filtration rate (GFR) both predicted levels of VCAM-1 and ICAM-1, independent of traditional cardiovascular risk factors (P ≤ 0.02). VCAM-1 was associated with common carotid artery intima–media thickness (P = 0.02) and plaque (P = 0.04) in RA. Patients had impaired endothelial function, less favourable traditional cardiovascular risk factor profiles, and higher circulating concentrations of hs-CRP and cytokines compared with healthy control individuals. Both traditional and nontraditional cardiovascular risk factors contributed to the differences in endothelial function between RA patients and healthy control individuals. IL-6, rheumatoid factor titres and low GFR were independently predictive of endothelial dysfunction in RA. Disease-modifying agents that effectively suppress both cytokine and rheumatoid factor production, and interventions aimed at preserving renal function may attenuate cardiovascular risk in RA.  相似文献   

11.
Comment on: Brault ME, et al. Mol Biol Cell 2011; 22:179-88.  相似文献   

12.
Endotoxin [or lipopolysaccharide (LPS)] increases levels of superoxide in blood vessels and impairs vasomotor function. Angiotensin II plays an important role in the generation of superoxide in several disease states, including hypertension and heart failure. The goal of this study was to determine whether the activation of the renin-angiotensin system contributes to oxidative stress and endothelial dysfunction after endotoxin. We examined the effects of enalapril (an angiotensin-converting enzyme inhibitor) or L-158809 (an angiotensin receptor blocker) on increases of superoxide and vasomotor dysfunction in mice treated with LPS. C57BL/6 mice were treated with either enalapril (60 mg.kg(-1).day(-1)) or L-158809 (30 mg.kg(-1).day(-1)) for 4 days. After the third day, LPS (10-20 mg/kg) or vehicle was injected intraperitoneally, and one day later, vasomotor function of the aorta was examined in vitro. After precontraction with PGF(2alpha), the maximal responses to sodium nitroprusside were similar in the aorta from normal and LPS-treated mice. In contrast, the relaxation to acetylcholine was impaired after LPS (54 +/- 5% at 10(-5), mean +/- SE) compared with vessels treated with vehicle (88 +/- 1%; P < 0.05). Enalapril improved (P < 0.05) relaxation in response to acetylcholine to 81 +/- 6% after LPS. L-158809 also improved relaxation in response to acetylcholine to 77 +/- 4% after LPS. Superoxide (measured with lucigenin and hydroethidine) was increased (P < 0.05) in aorta after LPS, and levels were reduced (P < 0.05) following enalapril and L-158809. Thus, after LPS, enalapril and L-158809 reduce superoxide levels and improve relaxation to acetylcholine in the aorta. The findings suggest that activation of the renin-angiotensin system contributes importantly to oxidative stress and endothelial dysfunction after endotoxin.  相似文献   

13.
Complications of atherosclerosis are the leading cause of death of patients with type 2 (insulin-resistant) diabetes. Understanding the mechanisms by which insulin resistance and hyperglycemia contribute to atherogenesis in key target tissues (liver, vessel wall, hematopoietic cells) can assist in the design of therapeutic approaches. We have shown that hyperglycemia induces FoxO1 deacetylation and that targeted knock-in of alleles encoding constitutively deacetylated FoxO1 in mice (Foxo1(KR/KR)) improves hepatic lipid metabolism and decreases macrophage inflammation, setting the stage for a potential anti-atherogenic effect of this mutation. Surprisingly, we report here that when Foxo1(KR/KR) mice are intercrossed with low density lipoprotein receptor knock-out mice (Ldlr(-/-)), they develop larger aortic root atherosclerotic lesions than Ldlr(-/-) controls despite lower plasma cholesterol and triglyceride levels. The phenotype is unaffected by transplanting bone marrow from Ldlr(-/-) mice into Foxo1(KR/KR) mice, indicating that it is independent of hematopoietic cells and suggesting that the primary lesion in Foxo1(KR/KR) mice occurs in the vessel wall. Experiments in isolated endothelial cells from Foxo1(KR/KR) mice indicate that deacetylation favors FoxO1 nuclear accumulation and exerts target gene-specific effects, resulting in higher Icam1 and Tnfα expression and increased monocyte adhesion. The data indicate that FoxO1 deacetylation can promote vascular endothelial changes conducive to atherosclerotic plaque formation.  相似文献   

14.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

15.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), whereas administration of anti-TNF-alpha before reperfusion attenuated TNF-alpha expression. We detected TNF-alpha expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-alpha at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-alpha before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-alpha are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-alpha expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.  相似文献   

16.
17.
Loss of endothelial function is a common feature to all cardiovascular diseases (CVDs). One of the risk factors associated with the development of CVDs is the hyperglycaemia that occurs in patients with metabolic disorders such as Type 1 and Type 2 diabetes mellitus. Hyperglycaemia causes endothelial dysfunction through increased production of reactive oxygen species (ROS) from different cellular sources leading to oxidative stress. Vascular endothelial growth factor (VEGF) is essential in the stimulation and maintenance of endothelial functional aspects and, although it can mitigate the impact of ROS, VEGF-mediated signalling is partially inhibited in diabetes mellitus. The search for therapeutic strategies that preserve, protect and improve the functions of the endothelium is of great relevance in the investigation of  CVDs associated with hyperglycaemia. Platelet-derived growth factor C (PDGF-C) is a peptide with angiogenic properties, independent of VEGF, that stimulates angiogenesis and revascularization of ischemic tissue. In a diabetic mouse model, PDGF-C stimulates mature endothelial cell migration, angiogenesis, endothelial progenitor cell mobilization, and increased neovascularization, and protects blood vessels in a retinal degeneration model activating anti-apoptosis and proliferation signalling pathways in endothelial cells. This review summarizes the information on the damage that high d-glucose causes on endothelial function and the beneficial effects that PDGF-CC could exert in this condition.  相似文献   

18.
19.
Aviv A 《Mutation research》2012,731(1-2):68-74
Malnutrition is a serious public health problem that affects approximately one third of all children. Developing countries have the highest incidence of malnourished children, and approximately 60% of deaths that occur in children under five are directly related to malnutrition and associated diseases. The relationship between malnutrition and genetic damage has been widely studied in humans and animal models. The micronucleus (MN) assay is useful in detecting chromosome damage induced by several factors. The aim of this study was to evaluate the effects of infection and malnutrition on the frequency of MN in erythrocytes from the peripheral blood of well-nourished, uninfected (WN) and well-nourished, infected (WNI) children, and moderately malnourished (UNM) and severely malnourished (UNS) children, both with infection, using a flow cytometric analysis technique. The percentage of reticulocytes (RETs) was significantly higher (1.5-fold) in WNI children than well-nourished controls. In addition, the UNS group had a 2.2-fold increase in the percentage of RETs compared to the WNI group. The frequency of micronucleated reticulocytes (MN-RETs) was 2.5 times greater, in WNI group compared to the WN group. These frequencies were significantly higher (1.7- and 2.1-fold) in UNM and UNS, respectively, compared to the WNI group. The results suggest that infection and malnutrition induce DNA damage in children.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号