首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of N-terminus benzamides of glycine-based symmetric peptides, linked to m-xylylenediamine and 3,4′-oxydianiline spacers, were prepared and tested as inhibitors of β-amyloid peptide Aβ1–40 aggregation in vitro. Compounds with good anti-aggregating activity were detected. Polyphenolic amides showed the highest anti-aggregating activity, with IC50 values in the micromolar range. Structure–activity relationships suggested that π–π stacking and hydrogen-bonding interactions play a key role in the inhibition of Aβ1–40 self-assembly leading to amyloid fibrils.  相似文献   

2.
Reflectance Fourier transform infrared (FT-IR) microspectroscopy was applied to study the prevention of β-sheet formation of amyloid β (Aβ)(1–40) peptide by co-incubation with a hexapeptide containing a KLVFF sequence (Aβ(15–20) fragment). Second-derivative spectral analysis was used to locate the position of the overlapping components of the amide I band of Aβ peptide and assigned them to different secondary components. The result indicates that each intact sample of Aβ(15–20) fragment or Aβ(1–40) peptide previously incubated in distilled water at 37 °C transformed their secondary structure from 1649 (1651) or 1653 cm−1 to 1624 cm−1, suggesting the transformation from -helix and/or random coil structures to β-sheet structure. By co-incubating both samples with different molar ratio in distilled water at 37 °C, the structural transformation was not found for Aβ(1–40) peptide after 24 h-incubation. But the β-sheet formation of Aβ(1–40) peptide after 48 h-incubation was evidenced from the appearance of the IR peak at 1626 cm−1 by adding a little amount of Aβ(15–20) fragment. There was no β-sheet formation of Aβ(1–40) peptide after addition with much amount of Aβ(15–20) fragment, however, suggesting the higher amount of Aβ(15–20) fragment used might inhibit the β-sheet formation of Aβ(1–40) peptide. The more Aβ(15–20) fragment used made the more stable structure of Aβ(1–40) peptide and the less β-sheet formation of Aβ(1–40) peptide. The study indicates that the reflectance FT-IR microspectroscopy can easily evidence the prevention of β-sheet formation of Aβ(1–40) peptide by a short amyloid fragment.  相似文献   

3.
β-Amyloid peptide (Aβ) 1–42, involved in the pathogenesis of Alzheimer’s disease, binds copper ions to form Aβ · Cun complexes that are able to generate H2O2 in the presence of a reductant and O2. The production of H2O2 can be stopped with chelators. More reactive than H2O2 itself, hydroxyl radicals HO (generated when a reduced redox active metal complex interacts with H2O2) are also probably involved in the oxidative stress that creates brain damage during the disease. We report in the present work a method to monitor the effect of chelating agents on the production of hydrogen peroxide by metallo-amyloid peptides. The addition of H2O2 associated to a pre-incubation step between ascorbate and Aβ · Cun allows to study the formation of H2O2 but also, at the same time, its transformation by the copper complexes. Aβ · Cun peptides produce but do not efficiently degrade H2O2. The reported analytic method, associated to precipitation experiments of copper-containing amyloid peptides, allows to study the inhibition of H2O2 production by chelators. The action of a ligand such as EDTA is probably due to the removal of the copper ions from Aβ · Cun, whereas bidentate ligands such as 8-hydroxyquinolines probably act via the formation of ternary complexes with Aβ · Cun. The redox activity of these bidentate ligands can be modulated by the incorporation or the modification of substituents on the quinoline heterocycle.  相似文献   

4.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   

5.
It is generally believed that amyloid β peptides (Aβ) are the key mediators of Alzheimer's disease. Therapeutic interventions have been directed toward impairing the synthesis or accelerating the clearance of Aβ. An equilibrium between blood and brain Aβ exists mediated by carriers that transport Aβ across the blood–brain barrier. Passive immunotherapy has been shown to be effective in mouse models of AD, where the plasma borne antibody binds plasma Aβ causing an efflux of Aβ from the brain. As an alternative to passive immunotherapy we have considered the use of Aβ-degrading peptidases to lower plasma Aβ levels. Here we compare the ability of three Aβ-degrading peptidases to degrade Aβ. Biotinylated peptidases were coupled to the surface of biotinylated erythrocytes via streptavidin. These erythrocyte-bound peptidases degrade Aβ peptide in plasma. Thus, peptidases bound to or expressed on the surface of erythroid cells represent an alternative to passive immunotherapy.  相似文献   

6.
The aggregation of 42-mer amyloid β (Aβ42) plays a central role in the pathogenesis of Alzheimer’s disease. Our recent research on proline mutagenesis of Aβ42 suggested that the formation of a turn structure at positions 22 and 23 could play a crucial role in its aggregative ability and neurotoxicity. Since E22K-Aβ42 (Italian mutation) aggregated more rapidly and with more potent neurotoxicity than wild-type Aβ42, the tertiary structure at positions 21–24 of E22K-Aβ42 fibrils was analyzed by solid-state NMR using dipolar-assisted rotational resonance (DARR) to identify the ‘malignant’ conformation of Aβ42. Two sets of chemical shifts for Asp-23 were observed in a ratio of about 2.6:1. The 2D DARR spectra at the mixing time of 500 ms suggested that the side chains of Asp-23 and Val-24 in the major conformer, and those of Lys-22 and Asp-23 in the minor conformer could be located on the same side, respectively. These data support the presence of a turn structure at positions 22 and 23 in E22K-Aβ42 fibrils. The formation of a salt bridge between Lys-22 and Asp-23 in the minor conformer might be a reason why E22K-Aβ42 is more pathogenic than wild-type Aβ42.  相似文献   

7.
The progressive accumulation of β-amyloid (Aβ) in senile plaques and in the cerebral vasculature is the hallmark of Alzheimer disease and related disorders. Impaired clearance of Aβ from the brain likely contributes to the prevalent sporadic form of Alzheimer disease. Several major pathways for Aβ clearance include receptor-mediated cellular uptake, blood-brain barrier transport, and direct proteolytic degradation. Myelin basic protein (MBP) is the major structural protein component of myelin and plays a functional role in the formation and maintenance of the myelin sheath. MBP possesses endogenous serine proteinase activity and can undergo autocatalytic cleavage liberating distinct fragments. Recently, we showed that MBP binds Aβ and inhibits Aβ fibril formation (Hoos, M. D., Ahmed, M., Smith, S. O., and Van Nostrand, W. E. (2007) J. Biol. Chem. 282, 9952–9961; Hoos, M. D., Ahmed, M., Smith, S. O., and Van Nostrand, W. E. (2009) Biochemistry 48, 4720–4727). Here we show that Aβ40 and Aβ42 peptides are degraded by purified human brain MBP and recombinant human MBP, but not an MBP fragment that lacks autolytic activity. MBP-mediated Aβ degradation is inhibited by serine proteinase inhibitors. Similarly, Cos-1 cells expressing MBP degrade exogenous Aβ40 and Aβ42. In addition, we demonstrate that purified MBP also degrades assembled fibrillar Aβ in vitro. Mass spectrometry analysis identified distinct degradation products generated from Aβ digestion by MBP. Lastly, we demonstrate in situ that purified MBP can degrade parenchymal amyloid plaques as well as cerebral vascular amyloid that form in brain tissue of Aβ precursor protein transgenic mice. Together, these findings indicate that purified MBP possesses Aβ degrading activity in vitro.The progressive accumulation of β-amyloid (Aβ)3 in senile/neuritic plaques and the cerebral vasculature is the hallmark of Alzheimer disease (AD) and is widely used in the pathological diagnosis of the disease. Aβ is generated by proteolytic cleavage of amyloid precursor protein (APP) by β-secretase and γ-secretase (1, 2). The main species of Aβ are 40 and 42 amino acids in length. Aβ42 is much more amyloidogenic than Aβ40 because of its two additional hydrophobic amino acids at the carboxyl-terminal end of the peptide (3). The Aβ42 peptide is the predominant form in senile plaques, forming a β-sheet structure, which is insoluble and resistant to proteolysis.Although increased production of Aβ has been implicated in the onset of familial forms of AD, it has been hypothesized that the more common sporadic forms of AD may be caused by the impaired clearance of Aβ peptides from the CNS. Several major pathways for Aβ clearance have been proposed including receptor-mediated cellular uptake, blood-brain barrier transport into the circulation, and direct proteolytic degradation (46). In the latter case, several proteinases or peptidases have been identified that are capable of degrading Aβ, including neprilysin (7, 8), insulin-degrading enzyme (9), the urokinase/tissue plasminogen activator-plasmin system (10), endothelin-converting enzyme (11), angiotensin-converting enzyme (12), gelatinase A (matrix metalloproteinase-2) (13, 14), gelatinase B (matrix metalloproteinase-9) (15), and acylpeptide hydrolase (16). Each of these enzymes has been shown to cleave Aβ peptides at multiple sites (5). However, only neprilysin, insulin-degrading enzyme, endothelin-converting enzyme, and matrix metalloproteinase-9 have been shown to have a significant role in regulating Aβ levels in the brains of experimental animal models (8, 17, 18).The “classic” myelin basic proteins (MBP) are major structural components of myelin sheaths accounting for 30% of total myelin protein. There are four different major isoforms generated from alternative splicing with molecular masses of 17.3, 18.5, 20.2, and 21.5 kDa. The 18.5-kDa variant, composed of 180 amino acids including 19 Arg and 12 Lys basic residues, is most abundant in mature myelin (19). One of the major functions of MBP is to hold together the cytoplasmic leaflets of myelin membranes to maintain proper compaction of the myelin sheath through the electrostatic interaction between the positive Arg and Lys residues of MBP and the negatively charged phosphate groups of the membrane lipid (20). MBP plays an important role in the pathology of multiple sclerosis, which is an autoimmune disease characterized by demyelination within white matter (21). Recently, it was reported that purified MBP exhibits autocleavage activity, generating distinct peptide fragments (22). In this study, serine 151 was reported as the active site serine residue involved in autocatalysis.In the early stages of AD, appreciable and diffuse myelin breakdown in the white matter is observed (23). Also, in white matter regions there are much fewer fibrillar amyloid deposits than are commonly found in gray matter regions. Recently, our laboratory has shown that MBP strongly interacts with Aβ peptides and prevents their assembly into mature amyloid fibrils (24, 25). Through the course of these studies we observed that upon longer incubations the levels of Aβ peptides were reduced upon treatment with MBP. In light of this observation, coupled with the report that MBP possesses proteolytic activity, we hypothesized that MBP may degrade Aβ peptides. In the present study, we show that purified human brain MBP and recombinantly expressed human MBP can degrade soluble Aβ40 and Aβ42 peptides in vitro. Purified MBP also degraded fibrillar Aβ in vitro. Mass spectrometry analysis identified distinct degradation products generated from soluble and fibrillar Aβ digestion by MBP. Furthermore, purified MBP degraded parenchymal and vascular fibrillar amyloid deposits in situ in the brain tissue of APP transgenic mice. Together, these findings indicate that purified MBP possesses Aβ degrading activity in vitro.  相似文献   

8.
Prostaglandins (PGs) are generated by the enzymatic activity of cyclooxygenase-1 and -2 (COX-1/2) and modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the induction of COX-2 and the generation of PGs has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). Non-steroidal anti-inflammatory drugs (NSAIDs) that block COX enzymatic activity have been shown to reduce the incidence of AD in various epidemiological studies. While several reports investigated the expression of COX-2 in neurons and microglia, expression of COX-2 in astroglial cells has not been investigated in detail. Here we show that amyloid β peptide 25–35 (Aβ25–35) induces COX-2 mRNA and protein synthesis and a subsequent release of prostaglandin E2 (PGE2) in primary midbrain astrocytes. We further demonstrate that protein kinase C (PKC) is involved in Aβ25–35-induced COX-2/PGE2 synthesis. PKC-inhibitors prevent Aβ25–35-induced COX-2 and PGE2 synthesis. Furthermore Aβ25–35 rapidly induces the phosphorylation and enzymatic activation of PKC in primary rat midbrain glial cells and in primary human astrocytes from post mortem tissue. Our data suggest that the PKC isoforms and/or β are most probably involved in Aβ25–35-induced expression of COX-2 in midbrain astrocytes. The potential role of astroglial cells in the phagocytosis of amyloid and the involvement of PGs in this process suggests that a modulation of PGs synthesis may be a putative target in the prevention of amyloid deposition.  相似文献   

9.
Drew SC  Masters CL  Barnham KJ 《PloS one》2010,5(12):e15875

Background

The amyloid-β (Aβ) peptide is the primary component of the extracellular senile plaques characteristic of Alzheimer''s disease (AD). The metals hypothesis implicates redox-active copper ions in the pathogenesis of AD and the Cu2+ coordination of various Aβ peptides has been widely studied. A number of disease-associated modifications involving the first 3 residues are known, including isomerisation, mutation, truncation and cyclisation, but are yet to be characterised in detail. In particular, Aβ in plaques contain a significant amount of truncated pyroglutamate species, which appear to correlate with disease progression.

Methodology/Principal Findings

We previously characterised three Cu2+/Aβ1–16 coordination modes in the physiological pH range that involve the first two residues. Based upon our finding that the carbonyl of Ala2 is a Cu2+ ligand, here we speculate on a hypothetical Cu2+-mediated intramolecular cleavage mechanism as a source of truncations beginning at residue 3. Using EPR spectroscopy and site-specific isotopic labelling, we have also examined four Aβ peptides with biologically relevant N-terminal modifications, Aβ1[isoAsp]–16, Aβ1–16(A2V), Aβ3–16 and Aβ3[pE]–16. The recessive A2V mutation preserved the first coordination sphere of Cu2+/Aβ, but altered the outer coordination sphere. Isomerisation of Asp1 produced a single dominant species involving a stable 5-membered Cu2+ chelate at the amino terminus. The Aβ3–16 and Aβ3[pE]–16 peptides both exhibited an equilibrium between two Cu2+ coordination modes between pH 6–9 with nominally the same first coordination sphere, but with a dramatically different pH dependence arising from differences in H-bonding interactions at the N-terminus.

Conclusions/Significance

N-terminal modifications significantly influence the Cu2+ coordination of Aβ, which may be critical for alterations in aggregation propensity, redox-activity, resistance to degradation and the generation of the Aβ3–× (× = 40/42) precursor of disease-associated Aβ3[pE]–x species.  相似文献   

10.
γ-Secretase is known to play a pivotal role in the pathogenesis of Alzheimer disease through production of amyloidogenic Aβ42 peptides. Early onset familial Alzheimer disease mutations in presenilin (PS), the catalytic core of γ-secretase, invariably increase the Aβ42:Aβ40 ratio. However, the mechanism by which these mutations affect γ-secretase complex formation and cleavage specificity is poorly understood. We show that our in vitro assay system recapitulates the effect of PS1 mutations on the Aβ42:Aβ40 ratio observed in cell and animal models. We have developed a series of small molecule affinity probes that allow us to characterize active γ-secretase complexes. Furthermore we reveal that the equilibrium of PS1- and PS2-containing active complexes is dynamic and altered by overexpression of Pen2 or PS1 mutants and that formation of PS2 complexes is positively correlated with increased Aβ42:Aβ40 ratios. These data suggest that perturbations to γ-secretase complex equilibrium can have a profound effect on enzyme activity and that increased PS2 complexes along with mutated PS1 complexes contribute to an increased Aβ42:Aβ40 ratio.β-Amyloid (Aβ)5 peptides are believed to play a causative role in Alzheimer disease (AD). Aβ peptides are generated from the processing of the amyloid precursor protein (APP) by two proteases, β-secretase and γ-secretase. Although γ-secretase generates heterogenous Aβ peptides ranging from 37 to 46 amino acids in length, significant work has focused mainly on the Aβ40 and Aβ42 peptides that are the major constituents of amyloid plaques. γ-Secretase is a multisubunit membrane aspartyl protease comprised of at least four known subunits: presenilin (PS), nicastrin (Nct), anterior pharynx-defective (Aph), and presenilin enhancer 2 (Pen2). Presenilin is thought to contain the catalytic core of the complex (14), whereas Aph and Nct play critical roles in the assembly, trafficking, and stability of γ-secretase as well as substrate recognition (5, 6). Lastly Pen2 facilitates the endoproteolysis of PS into its N-terminal (NTF) and C-terminal (CTF) fragments thereby yielding a catalytically competent enzyme (5, 710). All four proteins (PS, Nct, Aph1, and Pen2) are obligatory for γ-secretase activity in cell and animal models (11, 12). There are two homologs of PS, PS1 and PS2, and three isoforms of Aph1, Aph1aS, Aph1aL, and Aph1b. At least six active γ-secretase complexes have been reported (two presenilins × three Aph1s) (13, 14). The sum of apparent molecular masses of the four proteins (PS1-NTF/CTF ≈ 53 kDa, Nct ≈ 120 kDa, Aph1 ≈ 30 kDa, and Pen2 ≈ 10kDa) is ∼200 kDa. However, active γ-secretase complexes of varying sizes, ranging from 250 to 2000 kDa, have been reported (1519). Recently a study suggested that the γ-secretase complex contains only one of each subunit (20). Collectively these studies suggest that a four-protein complex around 200–250 kDa may be the minimal functional γ-secretase unit with additional cofactors and/or varying stoichiometry of subunits existing in the high molecular weight γ-secretase complexes. CD147 and TMP21 have been found to be associated with the γ-secretase complex (21, 22); however, their role in the regulation of γ-secretase has been controversial (23, 24).Mutations of PS1 or PS2 are associated with familial early onset AD (FAD), although it is debatable whether these familial PS mutations act as “gain or loss of function” alterations in regard to γ-secretase activity (2527). Regardless the overall outcome of these mutations is an increased ratio of Aβ42:Aβ40. Clearly these mutations differentially affect γ-secretase activity for the production of Aβ40 and Aβ42. Despite intensive studies of Aβ peptides and γ-secretase, the molecular mechanism controlling the specificity of γ-secretase activity for Aβ40 and Aβ42 production has not been resolved. It has been found that PS1 mutations affect the formation of γ-secretase complexes (28). However, the precise mechanism by which individual subunits alter the dynamics of γ-secretase complex formation and activity is largely unresolved. A better mechanistic understanding of γ-secretase activity associated with FAD mutations has been hindered by the lack of suitable assays and probes that are necessary to recapitulate the effect of these mutations seen in cell models and to characterize the active γ-secretase complex.In our present studies, we have determined the overall effect of Pen2 and PS1 expression on the dynamics of PS1- and PS2-containing complexes and their association with γ-secretase activity. Using newly developed biotinylated small molecular probes and activity assays, we revealed that expression of Pen2 or PS1 FAD mutants markedly shifts the equilibrium of PS1-containing active complexes to that of PS2-containing complexes and results in an overall increase in the Aβ42:Aβ40 ratio in both stable cell lines and animal models. Our studies indicate that perturbations to the equilibrium of active γ-secretase complexes by an individual subunit can greatly affect the activity of the enzyme. Moreover they serve as further evidence that there are multiple and distinct γ-secretase complexes that can exist within the same cells and that their equilibrium is dynamic. Additionally the affinity probes developed here will facilitate further study of the expression and composition of endogenous active γ-secretase from a variety of model systems.  相似文献   

11.
The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimer''s disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.  相似文献   

12.
The neurotoxic effects and influence of beta-amyloid peptide (Aβ)1–42 on membrane lipids and nicotinic acetylcholine receptors (nAChRs) in human SH-SY5Y neuroblastoma cells were investigated in parallel. Exposure of the cultured cells to varying concentrations of Aβ1–42 evoked a significantly decrease in cellular reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5,diphenyl tetrazolium bromide), together with enhanced lipid peroxidation and protein oxidation. Significant reductions in the total contents of phospholipid and unbiquinone-10, as well as in the levels of the 3 and 7 subunit proteins of nAChRs were detected in cells exposed to Aβ1–42. In contrast, such treatment had no effect on the total cellular content of cholesterol. Among these alterations, increased lipid peroxidation and decreased levels of cellular phospholipids were most sensitive to Aβ1–42, occurring at lower concentrations. In addition, when SH-SY5Y cells were pretreated with the antioxidant Vitamin E, prior to the addition of Aβ1–42, these alterations in neurotoxicity, oxidative stress, composition of membrane lipids and expression of nAChRs were partially prevented. These findings suggest that stimulation of lipid peroxidation by Aβ may be involved in eliciting the alterations in membrane lipid composition and the reduced expression of nAChRs associated with the pathogenesis of AD.  相似文献   

13.

Background

We describe molecular processes that can facilitate pathogenesis of Alzheimer''s disease (AD) by analyzing the catalytic cycle of a membrane-imbedded protease γ-secretase, from the initial interaction with its C99 substrate to the final release of toxic Aβ peptides.

Results

The C-terminal AICD fragment is cleaved first in a pre-steady-state burst. The lowest Aβ42/Aβ40 ratio is observed in pre-steady-state when Aβ40 is the dominant product. Aβ42 is produced after Aβ40, and therefore Aβ42 is not a precursor for Aβ40. The longer more hydrophobic Aβ products gradually accumulate with multiple catalytic turnovers as a result of interrupted catalytic cycles. Saturation of γ-secretase with its C99 substrate leads to 30% decrease in Aβ40 with concomitant increase in the longer Aβ products and Aβ42/Aβ40 ratio. To different degree the same changes in Aβ products can be observed with two mutations that lead to an early onset of AD, ΔE9 and G384A. Four different lines of evidence show that γ-secretase can bind and cleave multiple substrate molecules in one catalytic turnover. Consequently depending on its concentration, NotchΔE substrate can activate or inhibit γ-secretase activity on C99 substrate. Multiple C99 molecules bound to γ-secretase can affect processive cleavages of the nascent Aβ catalytic intermediates and facilitate their premature release as the toxic membrane-imbedded Aβ-bundles.

Conclusions

Gradual saturation of γ-secretase with its substrate can be the pathogenic process in different alleged causes of AD. Thus, competitive inhibitors of γ-secretase offer the best chance for a successful therapy, while the noncompetitive inhibitors could even facilitate development of the disease by inducing enzyme saturation at otherwise sub-saturating substrate. Membrane-imbedded Aβ-bundles generated by γ-secretase could be neurotoxic and thus crucial for our understanding of the amyloid hypothesis and AD pathogenesis.  相似文献   

14.

Background

Mutations linked to early onset, familial forms of Alzheimer''s disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. Although there is a growing consensus that FAD-linked PS1 mutations affect Aβ production by enhancing the Aβ1–42/Aβ1–40 ratio, it remains unclear whether and how they affect the generation of APP intracellular domain (AICD). Moreover, controversy exists as to how PS1 mutations exert their effects in different experimental systems, by either increasing Aβ1–42 production, decreasing Aβ1–40 production, or both. Because it could be explained by the heterogeneity in the composition of γ-secretase, we purified to homogeneity complexes made of human NCT, APH1aL, PEN2, and the pathogenic PS1 mutants L166P, ΔE9, or P436Q.

Methodology/Principal Findings

We took advantage of a mouse embryonic fibroblast cell line lacking PS1 and PS2 to generate different stable cell lines overexpressing human γ-secretase complexes with different FAD-linked PS1 mutations. A multi-step affinity purification procedure was used to isolate semi-purified or highly purified γ-secretase complexes. The functional characterization of these complexes revealed that all PS1 FAD-linked mutations caused a loss of γ-secretase activity phenotype, in terms of Aβ1–40, Aβ1–42 and APP intracellular domain productions in vitro.

Conclusion/Significance

Our data support the view that PS1 mutations lead to a strong γ-secretase loss-of-function phenotype and an increased Aβ1–42/Aβ1–40 ratio, two mechanisms that are potentially involved in the pathogenesis of Alzheimer''s disease.  相似文献   

15.
de Chiara C  Nicastro G  Spisni A  Zanotti F  Cocco T  Papa S 《Peptides》2002,23(12):2127-2141
The protein IF1 is a natural inhibitor of the mitochondrial FoF1-ATPase. Many investigators have been prompted to identify the shortest segment of IF1, retaining its native activity, for use in biomedical applications. Here, the activity of the synthetic peptides IF1-(42–58) and IF1-(22–46) is correlated to their structure and conformational plasticity determined by CD and [1H]-NMR spectroscopy. Among all the IF1 segments tested, IF1-(42–58) exerts the most potent, pH and temperature dependent activity on the FoF1 complex. The results suggest that, due to its flexible structure, it can fold in helical and/or β-spiral arrangements that favor the binding to the FoF1 complex, where the native IF1 binds. IF1-(22–46), instead, as it adopts a rigid -helical conformation, it inhibits ATP hydrolysis only in the soluble F1 moiety.  相似文献   

16.
Opiate binding sites in five brain regions were labeled with the μ and δ markers, 3H-morphine and 3H-[D-Ala2,D-leu5]enkephalin, respectively. The highest densities of both 3H-morphine and 3H-DADLE labeled sites are found in striatum and frontal cortex. Hypothalamus and midbrain contain predominantly 3H-morphine labeled sites. The selectivity of the opioid peptides [D-Ala2,D-leu5]enkephalin, β-endorphin and dynorphin(1–13) for the two opiate sites was investigated by comparing the potency of these unlabeled compounds against the μ and δ markers in different brain regions. This determination has the effect of controlling for the breakdown of peptides within each region. While the enkephalin analogue shows a preference for the δ binding site and β-endorphin is more nearly equipotent towards the two binding sites, dynorphin(1–13) shows a high affinity and selective preference for the μ binding site over the δ site. The potency of the opioid peptides in displacing the μ and δ markers varies from region to region according to the relative densities of the two opiate binding site populations.  相似文献   

17.
Increasing evidence implicates interactions between Aβ-peptides and membrane lipids in Alzheimer's disease. To gain insight into the potential role of the free amino group of the N-terminus of Aβ29-42 fragment in these processes, we have investigated the ability of Aβ29-42 unprotected and Aβ29-42 N-protected to interact with negatively-charged liposomes and have calculated the interaction with membrane lipids by conformational analysis. Using vesicles mimicking the composition of neuronal membranes, we show that both peptides have a similar capacity to induce membrane fusion and permeabilization. The fusogenic effect is related to the appearance of non-bilayer structures where isotropic motions occur as shown by 31P and 2H NMR studies. The molecular modeling calculations confirm the experimental observations and suggest that lipid destabilization could be due to the ability of both peptides to adopt metastable positions in the presence of lipids. In conclusion, the presence of a free or protected (acetylated) amino group in the N-terminus of Aβ29-42 is therefore probably not crucial for destabilizing properties of the C-terminal fragment of Aβ peptides.  相似文献   

18.
Retrospective epidemiological studies have suggested that chronic treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) provides some degree of protection from Alzheimer's disease (AD). Although most NSAIDs inhibit the activity of cyclooxygenase (COX), the rate-limiting enzyme in the production of prostanoids from arachidonic acid (AA), the precise mechanism through which NSAIDs act upon AD pathology remains to be elucidated. Classical NSAIDs like indomethacin inhibit both the constitutive COX-1 and the inducible COX-2 enzymes. In the present work, we characterize the protective effect of the indomethacin on the neurotoxicity elicited by amyloid-β protein (Aβ, fragments 25–35 and 1–42) alone or in combination with AA added exogenously as well as its effects on COX-2 expression. We also compared the neuroprotective effects of indomethacin with the selective COX-1, COX-2 and 5-LOX inhibitors, SC-560, NS-398 and NDGA, respectively. Our results show that indomethacin protected from Aβ and AA toxicity in naive and differentiated human neuroblastoma cells with more potency than SC-560 while, NS-398 only protected neurons from AA-mediated toxicity. Present results suggest that Aβ toxicity can be reversed more efficiently by the non-selective COX inhibitor indomethacin suggesting its role in modulating the signal transduction pathway involved in the mechanism of Aβ neurotoxicity.  相似文献   

19.
Amyloid β-protein 1–42 (Aβ42) is believed to play a causative role in the development of Alzheimer disease (AD), although it is a minor part of Aβ. In contrast, Aβ40 is the predominant secreted form of Aβ and recent studies have suggested that Aβ40 has neuroprotective effects and inhibits amyloid deposition. We have reported that angiotensin-converting enzyme (ACE) converts Aβ42 to Aβ40, and its inhibition enhances brain Aβ42 deposition (Zou, K., Yamaguchi, H., Akatsu, H., Sakamoto, T., Ko, M., Mizoguchi, K., Gong, J. S., Yu, W., Yamamoto, T., Kosaka, K., Yanagisawa, K., and Michikawa, M. (2007) J. Neurosci. 27, 8628–8635). ACE has two homologous domains, each having a functional active site. In the present study, we identified the domain of ACE, which is responsible for converting Aβ42 to Aβ40. Interestingly, Aβ42-to-Aβ40-converting activity is solely found in the N-domain of ACE and the angiotensin-converting activity is found predominantly in the C-domain of ACE. We also found that the N-linked glycosylation is essential for both Aβ42-to-Aβ40- and angiotensin-converting activities and that unglycosylated ACE rapidly degraded. The domain-specific converting activity of ACE suggests that ACE inhibitors could be designed to specifically target the angiotensin-converting C-domain, without inhibiting the Aβ42-to-Aβ40-converting activity of ACE or increasing neurotoxic Aβ42.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号