首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A thymine glycol-DNA glycosylase/AP endonuclease has been identified in human CEM-C1 lymphoblasts. The enzyme is active in the absence of divalent cations and has an apparent molecular size of approximately 60,000 daltons. The enzyme releases thymine glycol from osmium tetroxide-damaged DNA via an N-glycosylase activity and is associated with an endonuclease activity that mediates phosphodiester bond cleavage at sites of thymine glycol and apurinic sites. We propose that this enzyme, which we call redoxyendonuclease, is the human analog of a bacterial enzyme, E. coli endonuclease III, that recognizes oxidative DNA damage.  相似文献   

3.
Telomeres are critical for cell survival and functional integrity. Oxidative DNA damage induces telomeric instability and cellular senescence that are associated with normal aging and segmental premature aging disorders such as Werner Syndrome and Rothmund–Thomson Syndrome, caused by mutations in WRN and RECQL4 helicases respectively. Characterizing the metabolic roles of RECQL4 and WRN in telomere maintenance is crucial in understanding the pathogenesis of their associated disorders. We have previously shown that WRN and RECQL4 display a preference in vitro to unwind telomeric DNA substrates containing the oxidative lesion 8-oxoguanine. Here, we show that RECQL4 helicase has a preferential activity in vitro on telomeric substrates containing thymine glycol, a critical lesion that blocks DNA metabolism, and can be modestly stimulated further on a D-loop structure by TRF2, a telomeric shelterin protein. Unlike that reported for telomeric D-loops containing 8-oxoguanine, RECQL4 does not cooperate with WRN to unwind telomeric D-loops with thymine glycol, suggesting RECQL4 helicase is selective for the type of oxidative lesion. RECQL4's function at the telomere is not yet understood, and our findings suggest a novel role for RECQL4 in the repair of thymine glycol lesions to promote efficient telomeric maintenance.  相似文献   

4.
The UvrABC nuclease complex recognizes a wide spectrum of DNA lesions including pyrimidine dimers, bulky chemical adducts and O6-methylguanine. In this study we have demonstrated that the UvrABC complex is also able to incise PM2 DNA containing the oxidative DNA lesion, thymine glycol. However, DNA containing dihydrothymine, a lesion with a similar structure to thymine glycol, was not incised. The UvrABC complex was also able to incise DNA containing reduced apurinic sites or apurinic sites modified with O-alkyl hydroxylamines, but not DNA containing apurinic sites or urea residues. In vivo, in the absence of base-excision repair, nucleotide excision repair was operable on phi X-174 RF transfecting DNA containing thymine glycols. The level of the repair was found to be directly related to the level of the UvrABC complex. Thus, UvrABC-mediated nucleotide excision repair appears to play a role in the repair of thymine glycol, an oxidative DNA-base lesion that is produced by ionizing radiation or formed during oxidative respiration.  相似文献   

5.
An ionizing radiation-induced DNA lesion, thymine glycol, is removed from DNA by a thymine glycol DNA glycosylase with an apurinic/apyrimidinic (AP) lyase activity encoded by the Escherichia coli endonuclease III ( nth ) gene and its homolog in humans. Cells from Cockayne syndrome patients with mutations in the XPG gene show approximately 2-fold reduced global repair of thymine glycol. Hence, I decided to investigate the molecular mechanism of the effect of XPG protein observed in vivo on thymine glycol removal by studying the interactions of XPG protein and human endonuclease III (HsNTH) protein in vitro and the effect of XPG protein on the activity of HsNTH protein on a substrate containing thymine glycol. The XPG protein stimulates the binding of HsNTH protein to its substrate and increases its glycosylase/AP lyase activity by a factor of approximately 2 through direct interaction between the two proteins. These results provide in vitro evidence for a second function of XPG protein in DNA repair and a mechanistic basis for its stimulatory activity on HsNTH protein.  相似文献   

6.
Genomic DNA is constantly being damaged and repaired and our genomes exist at lesion equilibrium for damage created by endogenous mutagens. Mitochondrial DNA (mtDNA) has the highest lesion equilibrium frequency recorded; presumably due to damage by H2O2 and free radicals generated during oxidative phosphorylation processes. We measured the frequencies of single strand breaks and oxidative base damage in mtDNA by ligation-mediated PCR and a quantitative Southern blot technique coupled with digestion by the enzymes endonuclease III and formamidopyrimidine DNA glycosylase. Addition of 5 mM alloxan to cultured rat cells increased the rate of oxidative base damage and, by several fold, the lesion frequency in mtDNA. After removal of this DNA damaging agent from culture, the single strand breaks and oxidative base damage frequency decreased to levels slightly below normal at 4 h and returned to normal levels at 8 h, the overshoot at 4 h being attributed to an adaptive up-regulation of mitochondrial excision repair activity. Guanine positions showed the highest endogenous lesion frequencies and were the most responsive positions to alloxan-induced oxidative stress. Although specific bases were consistently hot spots for damage, there was no evidence that removal of these lesions occurred in a strand-specific manner. The data reveal non-random oxidative damage to several nucleotides in mtDNA and an apparent adaptive, non-strand selective response for removal of such damage. These are the first studies to characterize oxidative damage and its subsequent removal at the nucleotide level in mtDNA.  相似文献   

7.
DNA tandem lesions are comprised of two contiguously damaged nucleotides. This subset of clustered lesions is produced by a variety of oxidizing agents, including ionizing radiation. Clustered lesions can inhibit base excision repair (BER). We report the effects of tandem lesions composed of a thymine glycol and a 5'-adjacent 2-deoxyribonolactone (LTg) or tetrahydrofuran abasic site (FTg). Some BER enzymes that act on the respective isolated lesions do not accept the tandem lesion as a substrate. For instance, endonuclease III (Nth) does not excise thymine glycol (Tg) when it is part of either tandem lesion. Similarly, endonuclease IV (Nfo) does not incise L or F when they are in tandem with Tg. Long-patch BER overcomes inhibition by the tandem lesion. DNA polymerase beta (Pol beta) carries out strand displacement synthesis, following APE1 incision of the abasic site. Pol beta activity is enhanced by flap endonuclease (FEN1), which cleaves the resulting flap. The tandem lesion is also incised by the bacterial nucleotide excision repair system UvrABC with almost the same efficiency as an isolated Tg. These data reveal two solutions that DNA repair systems can use to counteract the formation of tandem lesions.  相似文献   

8.
9.
The repair enzymes thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) remove thymines from T:G mismatches resulting from deamination of 5-methylcytosine. Thymine glycol, a common DNA lesion produced by oxidative stress, can arise from oxidation of thymine or from oxidative deamination of 5-methylcytosine, and is then present opposite adenine or opposite guanine, respectively. Here we have used oligonucleotides with thymine glycol incorporated into different sequence contexts and paired with adenine or guanine. We show that TDG and MBD4 can remove thymine glycol when present opposite guanine but not when paired with adenine. The efficiency of these enzymes for removal of thymine glycol is about half of that for removal of thymine in the same sequence context. The two proteins may have evolved to act specifically on DNA mismatches produced by deamination and by oxidation-coupled deamination of 5-methylcytosine. This repair pathway contributes to mutation avoidance at methylated CpG dinucleotides.  相似文献   

10.
Back JH  Chung JH  Park YI  Kim KS  Han YS 《DNA Repair》2003,2(5):455-470
Damaged DNA strands are repaired by base excision (BER) in organisms, a process initiated by repair enzymes, which include DNA glycosylases and endonucleases. We expressed and characterized two putative endonuclease genes from Methanobacterium thermoautotrophicum, Mt0764 and Mt1010, encoding homologues of endonuclease III (endo III) and endonuclease IV (endo IV) of Escherichia coli. The Mt0764 and Mt1010 proteins showed endo III activity by removing thymine glycol from DNA strand and AP endonuclease activity, respectively. The Mt0764 protein not only cleaved the oligonucleotide duplex, containing a thymine glycol/adenine pair efficiently, but also showed activity on the 8-oxoguanine-containing oligonucleotide duplex. In this study, we report upon the stimulation of endo III activity by endo IV using two recombinant proteins (Mt1010 and Mt0764) from M. thermoautotrophicum. Mt1010 stimulated the DNA glycosylase activity of Mt0764 for DNA substrates containing 8-oxoguanine residues and increasing the formation of the Mt0764 protein-DNA complex. The interaction between Mt1010 and Mt0764 was observed by using an in vitro binding assay. These results suggest that association between endo III and endo IV may occur in vivo, and this contributes to efficient base excision repair for the oxidative damage of DNA.  相似文献   

11.
12.
Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro   总被引:8,自引:0,他引:8  
J M Clark  G P Beardsley 《Biochemistry》1987,26(17):5398-5403
  相似文献   

13.
8-oxo-deoxyguanosine (8-oxodG) is one of the major DNA lesions formed upon oxidative attack of DNA. It is a mutagenic adduct that has been associated with pathological states such as cancer and aging. Base excision repair (BER) is the main pathway for the repair of 8-oxodG. There is a great deal of interest in the question about age-associated accumulation of this DNA lesion and its intracellular distribution, particularly with respect to mitochondrial or nuclear localization. We have previously shown that 8-oxodG-incision activity increases with age in rat mitochondria obtained from both liver and heart. In this study, we have investigated the age-associated changes in DNA repair activities in both mitochondrial and nuclear extracts obtained from mouse liver. We observed that 8-oxodG incision activity of mitochondrial extracts increases significantly with age, from 13.4 + or - 2.2 fmoles of oligomer/100 microg of protein/16 h at 6 to 18.6 + or - 4.9 at 14 and 23.7 + or - 3.8 at 23 months of age. In contrast, the nuclear 8-oxodG incision activity showed no significant change with age, and in fact slightly decreased from 11.8 + or - 3 fmoles/50 microg of protein/2 h at 6 months to 9.7 + or - 0.8 at 14 months. Uracil DNA glycosylase and endonuclease G activities did not change with age in nucleus or mitochondria. Our results show that the repair of 8-oxodG is regulated differently in nucleus and mitochondria during the aging process. The specific increase in 8-oxodG-incision activity in mitochondria, rather than a general up-regulation of DNA metabolizing enzymes in those organelles, suggests that this pathway may be up regulated during aging in mice.  相似文献   

14.
Mitochondrial DNA is constantly exposed to high levels of endogenously produced reactive oxygen species, resulting in elevated levels of oxidative damaged DNA bases. A large spectrum of DNA base alterations can be detected after oxidative stress, and many of these are highly mutagenic. Thus, an efficient repair of these is necessary for survival. Some of the DNA repair pathways involved have been characterized, but others are not yet determined. A DNA repair activity for thymine glycol and other oxidized pyrimidines has been described in mammalian mitochondria, but the nature of the glycosylases involved in this pathway remains unclear. The generation of mouse strains lacking murine thymine glycol-DNA glycosylase (mNTH1) and/or murine 8-oxoguanine-DNA glycosylase (mOGG1), the two major DNA N-glycosylase/apurinic/apyrimidinic (AP) lyases involved in the repair of oxidative base damage in the nucleus, has provided very useful biological model systems for the study of the function of these and other glycosylases in mitochondrial DNA repair. In this study, mouse liver mitochondrial extracts were generated from mNTH1-, mOGG1-, and [mNTH1, mOGG1]-deficient mice to ascertain the role of each of these glycosylases in the repair of oxidized pyrimidine base damage. We also characterized for the first time the incision of various modified bases in mitochondrial extracts from a double-knock-out [mNTH1, mOGG1]-deficient mouse. We show that mNTH1 is responsible for the repair of thymine glycols in mitochondrial DNA, whereas other glycosylase/AP lyases also participate in removing other oxidized pyrimidines, such as 5-hydroxycytosine and 5-hydroxyuracil. We did not detect a backup glycosylase or glycosylase/AP lyase activity for thymine glycol in the mitochondrial mouse extracts.  相似文献   

15.
Thymine glycol, a potentially lethal DNA lesion produced by reactive oxygen species, can be removed by DNA glycosylase, Escherichia coli Nth (endonuclease III), or its mammalian homologue NTH1. We have found previously that mice deleted in the Nth homologue still retain at least two residual glycosylase activities for thymine glycol. We report herein that in cell extracts from the mNth1 knock-out mouse there is a third thymine glycol glycosylase activity that is encoded by one of three mammalian proteins with sequence similarity to E. coli Fpg (MutM) and Nei (endonuclease VIII). Tissue expression of this mouse Nei-like (designated as Neil1) gene is ubiquitous but much lower than that of mNth1 except in heart, spleen, and skeletal muscle. Recombinant NEIL1 can remove thymine glycol and 5-hydroxyuracil in double- and single-stranded DNA much more efficiently than 8-oxoguanine and can nick the strand by an associated (beta-delta) apurinic/apyrimidinic lyase activity. In addition, the mouse NEIL1 has a unique DNA glycosylase/lyase activity toward mismatched uracil and thymine, especially in U:C and T:C mismatches. These results suggest that NEIL1 is a back-up glycosylase for NTH1 with unique substrate specificity and tissue-specific expression.  相似文献   

16.
Oxidative damage in testicular DNA is associated with poor semen quality, reduced fertility and increased risk of stillbirths and birth defects. These DNA lesions are predominantly removed by base excision repair. Cellular extracts from human and rat testicular cells and three enriched populations of rat male germ cells (primary spermatocytes, round spermatids and elongating/elongated spermatids) all showed proficient excision/incision of 5-hydroxycytosine, thymine glycol and 2,6-diamino-4-hydroxy-5-formamidopyrimidine. DNA containing 8-oxo-7,8-dihydroguanine was excised poorly by human testicular cell extracts, although 8-oxoguanine-DNA glycosylase-1 (hOGG1) was present in human testicular cells, at levels that varied markedly between 13 individuals. This excision was as low as with human mononuclear blood cell extracts. The level of endonuclease III homologue-1 (NTH1), which excises oxidised pyrimidines, was higher in testicular than in somatic cells of both species. Cellular repair studies of lesions recognised by formamidopyrimidine-DNA glycosylase (Fpg) or endonuclease III (Nth) were assayed with alkaline elution and the Comet assay. Consistent with the enzymatic activities, human testicular cells showed poor removal of Fpg-sensitive lesions but efficient repair of Nth-sensitive lesions. Rat testicular cells efficiently repaired both Fpg- and Nth-sensitive lesions. In conclusion, human testicular cells have limited capacity to repair important oxidative DNA lesions, which could lead to impaired reproduction and de novo mutations.  相似文献   

17.
Reactive oxygen species (ROS) are ubiquitous DNA-damaging agents, and the repair of oxidative DNA lesions is essential to prevent mutations and cell death. Escherichia coli endonuclease III is the prototype repair enzyme for removal of oxidized pyrimidines from DNA. A database homology search identified a genomic sequence in Arabidopsis thaliana encoding a predicted protein with sequence similarity to E. coli endonuclease III. We cloned, sequenced and expressed the corresponding cDNA, which encodes a 39.1 kDa protein containing several sequence motifs conserved in endonuclease III homologues, including an iron-sulfur cluster domain and critical residues at the active site. The protein, designated AtNTH1, was over-expressed in E. coli and purified to apparent homogeneity. AtNTH1 exhibits DNA-glycosylase activity on different types of DNA substrates with pyrimidine damage, being able to release both urea and thymine glycol from double-stranded polydeoxyribonucleotides. The enzyme also possesses an apurinic/apyrimidinic lyase activity on UV- and -irradiated DNA substrates. The AtNTH1 gene contains 10 introns and 11 exons and is widely expressed in different plant tissues. Our results suggest that AtNTH1 is a structural and functional homologue of endonuclease III and probably plays a major role in plant defence against oxidative DNA damage.  相似文献   

18.
Mitochondria, oxidative stress and aging   总被引:14,自引:0,他引:14  
In the eighties, Miquel and Fleming suggested that mitochondria play a key role in cellular aging. Mitochondria, and specially mitochondrial DNA (mtDNA), are major targets of free radical attack. At present, it is well established that mitochondrial deficits accumulate upon aging due to oxidative damage. Thus, oxidative lesions to mtDNA accumulate with age in human and rodent tissues. Furthermore, levels of oxidative damage to mtDNA are several times higher than those of nuclear DNA. Mitochondrial size increases whereas mitochondrial membrane potential decreases with age in brain and liver.

Recently, we have shown that treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E or the Ginkgo biloba extract EGb 761, protects against the age-associated oxidative damage to mtDNA and oxidation of mitochondrial glutathione. Moreover, the extract EGb 761 also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver. Thus, mitochondrial aging may be prevented by antioxidants. Furthermore, late onset administration of certain antioxidants is also able to prevent the impairment in physiological performance, particularly motor co-ordination, that occurs upon aging.  相似文献   

19.
A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO4-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.  相似文献   

20.
Mammalian rpS3, a ribosomal protein S3 with a DNA repair endonuclease activity, nicks heavily UV-irradiated DNA and DNA containing AP sites. RpS3 calls for a novel endonucleolytic activity on AP sites generated from pyrimidine dimers by T4 pyrimidine dimer glycosylase activity. This study revealed that rpS3 cleaves the lesions including AP sites, thymine glycols, and other UV damaged lesions such as pyrimidine dimers. This enzyme does not have a glycosylase activity as predicted from its amino acid sequence. However, it has an endonuclease activity on DNA containing thymine glycol, which is exactly overlapped with UV-irradiated or AP DNAs, indicating that rpS3 cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity acting as a base-damage-endonuclease. RpS3 cleaves supercoiled UV damaged DNA more efficiently than the relaxed counterpart, and the endonuclease activity of rpS3 was inhibited by MgCl2 on AP DNA but not on UV-irradiated DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号