首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to characterize the nature of the active site of cytochrome P450 2E1, the metabolism of various fatty acids with cis/trans geometric configurations has been investigated. A system coupling atmospheric pressure chemical ionization-mass spectrometry detection with HPLC separation was developed as an alternative method for the characterization of hydroxylated metabolites of oleic and elaidic acids in rat and human liver microsomes. Oxidation of oleic and elaidic acids led to the formation of two main metabolites which were identified by LC–MS and GC–MS as ω and (ω-1)-hydroxylated (or 17-OH and 18-OH) fatty acids, on the basis of their pseudo-molecular mass and their fragmentation. The assay was accurate and reproducible, with a detection limit of 25 ng per injection, a linear range from 25 to 1128 ng per injection, no recorded interference, intra-day and inter-day precision with variation coefficients <14%. This LC–MS method was validated with oleic acid by using both radiometric and mass spectrometric detections. A significant correlation was found between the two methods in human (r=0.86 and 0.94 with P<0.05 and 0.01) and rat liver microsomes (r =0.90 and 0.85 with P<0.01 and 0.05) for 17-OH and 18-OH metabolites, respectively. HPLC coupled to mass spectrometry for the analysis of hydroxylated metabolites of elaidic acid offers considerable advantages since the method does not require use of a radioactive molecule, completely separates the two hydroxymetabolites, confirms the identification of each metabolite, and is as sensitive as the radiometric analysis method. This method allowed the comparative study of oleic and elaidic acid hydroxylations by both human and rat liver microsomal preparations.  相似文献   

2.
The metabolism of N-methyl substituted 7H-dibenzo[c,g]carbazole (N-Me DBC) was investigated in vitro using liver microsomes from 3-methylcholanthrene (MC)-, benzo[c]carbazole (BC) and Arochlor-pretreated mice and rats. N-Me DBC is a potent sarcomatogen devoid of hepatotoxicity and liver carcinogenic activity. The ethyl acetate-extractable metabolites were separated by high performance liquid chromatography (HPLC) and most of them were identified by proton magnetic resonance (PMR), mass spectrometry (MS) and comparison with synthetically prepared specimens. Mouse and rat microsomes gave rise to the same metabolites. The major metabolites were 5-OH-N-Me DBC (50%), N-hydroxymethyl (HMe) DBC (25-30%) and 3-OH-N-Me DBC (10%). Addition of 1,1,1-trichloropropene-2,3-oxide (TCPO) to the standard incubation medium permitted the identification of two dihydrodiols among the minor metabolites. No metabolite of DBC was observed after incubation of N-Me DBC, or its major metabolite N-HMe DBC, with either mouse or rat microsomes, but the possibility of a slight demethylation cannot be totally excluded. The lack of biotransformation at the nitrogen atom site may explain the lack of hepatotoxicity and liver carcinogenic activity of N-Me DBC. The modulation of metabolism by epoxide hydrolase, cytosol and glutathione was also investigated. The results are discussed in the light of data previously obtained with hepatotoxic and hepatocarcinogenic DBC.  相似文献   

3.
Fentanyl, a synthetic opioid, undergoes important biotransformation to several metabolites. A gas chromatographic–mass spectrometric assay was applied for the simultaneous analysis of fentanyl and its major metabolites in biological samples. The identification of different metabolites was performed by gas chromatography–mass spectrometry (electronic impact and chemical ionisation modes) and gas chromatography–Fourier transform infrared spectroscopy. In the present study, rat and human microsomes incubation mixtures and human urines were analysed. In vitro formation of already known fentanyl metabolites was confirmed. The presence of metabolites not previously detected in human urine is described.  相似文献   

4.
Due to our interest in drugs with a glutarimide structure, we reinvestigated the stereoselectivity of the in vitro biotransformation of the chiral hypnotic-sedative drug glutethimide. Glutethimide enantiomers were separated on a preparative scale by HPLC on cellulose tris(4-methylbenzoate) as chiral stationary phase. The enantiometric purity was higher than 99%. A reversed-phase HPLC method was developed to determine the metabolites of glutethimide. After incubations with rat liver microsomes both enantiomers formed 5-hydroxyglutethimide as the main metabolite, as well as additional metabolites, of which some were formed stereoselectivity. Mass spectrometry of the unknown metabolites indicated a hydroxylation in the ethyl side chain for two of the metabolites. A third metabolite was tentatively identified as desethylgutethimide.  相似文献   

5.
In this paper, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous analysis of metabolic stability and metabolite profiling of 1-[4-(2-methoxyethyl) phenoxy]-3-[[2-(2-methoxyphenoxy) ethyl]amino]-2-propanol hydrochloride (TJ0711 HCl), a new vasodilatory β-blocker. Multiple reaction monitoring (MRM) was used as a survey scan to quantify the parent compound and to trigger the acquisition of enhanced product ions (EPI) for the identification of formed metabolites. In addition, comparison between MRM-only and MRM-information dependent acquisition-EPI (MRM-IDA-EPI) methods was conducted to determine analytical variables, including linearity, limit of detection (LOD), lower limit of quantification (LLOQ), as well as intra-day and inter-day accuracy and precision. Results demonstrated that MRM-IDA-EPI quantitative analysis was not affected by the addition of EPI scans to obtain qualitative information during the same chromatographic run, compared to MRM-only method. Thereafter, metabolic stability and metabolite identification of TJ0711 HCl were investigated using human liver microsomes (HLM) by the MRM-IDA-EPI method. The in vitro metabolic stability parameters were calculated and t(1/2), microsomal intrinsic clearance (CL(int)), as well as hepatic CL, were 13.0 min, 106.5 μL/min/mg microsomal protein, and 1082.2 mL/min, respectively. The major formed metabolites were also simultaneously monitored and the metabolite profiling data demonstrated that this MRM-IDA-EPI method was capable of targeting a large number of metabolites, in which demethylation and hydroxylation were the principle metabolism pathways during the in vitro incubation with HLM.  相似文献   

6.
Optically active 7-hydroxy-7,8-dihydrobenzo[a]pyrene and 8-hydroxy-7,8-dihydrobenzo[a]pyrene were identified as two of the major metabolites formed by incubation of 7,8-dihydrobenzo[a]pyrene with rat liver microsomes. Optically active 9-hydroxy-9,10-dihydrobenzo[a]pyrene and 10-hydroxy-9,10-dihydrobenzo[a]pyrene were similarly identified as two of the minor metabolites of 9,10-dihydrobenzo[a]pyrene. The formation of these metabolites was abolished either by prior treatment of liver microsomes with carbon monoxide or the absence of NADPH, but was not inhibited by an epoxide hydrolase inhibitor. The results indicate that the aliphatic carbons of dihydro polycyclic aromatic hydrocarbons may undergo stereoselective hydroxylation reactions catalyzed by the cytochrome P-450 system of rat liver microsomes.  相似文献   

7.
Recently, several mutants of cytochrome P450 BM3 (CYP102A1) with high activity toward drugs have been obtained by a combination of site-directed and random mutagenesis. In the present study, the applicability of these mutants as biocatalysts in the production of reactive metabolites from the drugs clozapine, diclofenac and acetaminophen was investigated. We showed that the four CYP102A1 mutants used in this study formed the same metabolites as human and rat liver microsomes, with an activity up to 70-fold higher compared to human enzymes. Using these CYP102A1 mutants, three novels GSH adducts of diclofenac were discovered which were also formed in incubations with human liver microsomes. This work shows that CYP102A1 mutants are very useful tools for the generation of high levels of reference metabolites and reactive intermediates of drugs. Producing high levels of those reactive metabolites, that might play a role in adverse drug reactions (ADRs) in humans, will facilitate their isolation, structural elucidation, and could be very useful for the toxicological characterization of novel drugs and/or drug candidates.  相似文献   

8.
A single injection of cobalt-protoporphyrin (50 mumol/kg) produced marked changes in the metabolism of 14C-labeled testosterone and 4-androstenedione by male rat liver microsomes and this effect was maintained for at least 3 weeks. The rate of 3 beta- and 5 alpha-reduction was increased to levels observed in untreated adult female animals and cobalt-protoporphyrin altered the metabolic profile of testosterone towards that observed after infusion of growth hormone whereas hypophysectomy produced a more general inhibition of androgen metabolism. The reduction of testosterone or 4-androstenedione by liver microsomes was also increased when cobalt-protoporphyrin (10-30 microM) was added in vitro but a higher concentration (100 microM) led to inhibition of androgen metabolism. The identity of the main androgen metabolites was established by TLC, HPLC and mass spectrometry and the role of 5 alpha-reductase was demonstrated using a specific inhibitor of this enzyme. The possible sites of action of cobalt-protoporphyrin are discussed in relation to its in vivo effects on serum testosterone and LH concentrations.  相似文献   

9.
Two metabolic products were formed from ochratoxin A by human, pig, and rat liver microsomal fractions in the presence of reduced nicotinamide adenine dinucleotide phosphate. They were isolated from the incubation mixture in the presence of pig liver microsomes by extraction, thin-layer chromatography, and high-pressure liquid chromatography Their structures are suggested to be (4R)- and (4S)-4-hydroxyochratoxin A on the basis of mass and nuclear magnetic resonance spectroscopy. Km and the maximum velocity for the formation of the two metabolites by human, pig, and rat microsomes were determined. Their formation was inhibited by carbon monoxide and metyrapone. The results indicate that the microsomal hydroxylation system is a cytochrome P-450 and that different species are involved in the formation of the two epimeric forms of 4-hydroxyochratoxin A.  相似文献   

10.
The same two major CYP mediated metabolites of DG-051 were produced in the presence of rat, dog, monkey and human liver microsomes. Their respective structures were hypothesized based on mass spectrometry data correlated with the parent structure and confirmed by comparison with authentic synthetic samples. The number of regioisomers synthesized as candidates for metabolite M1 was narrowed down using a metabolic study of a selectively deuterated DG-051 analogue.  相似文献   

11.
Precocene II (6,7-dimethoxy-2,2-dimethylchromene), the most active anti-juvenile hormone isolated from Ageratum houstonianum, has been shown to be hepatotoxic in male Sprague-Dawley rats. A single 300-mg/kg dose of precocene II administered via i.p. injection caused extensive necrosis of parenchymal cells in the hepatic centrolobular areas. Liver functions were markedly affected as shown by the significant increases of glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase in the serum. By means of reversed-phase high pressure liquid chromatography (HPLC), [3H]precocene II was found to be rapidly metabolized in vitro by rat liver microsomes in an NADPH-generating system. Approximately 5% (3.4 nmol/mg protein) of the radioactivity from the [3H]precocene II substrate was covalently bound to the macromolecular pellet at the end of a 15-min incubation period when phenobarbital (PB)-induced microsomes were used. Results obtained from experiments using different incubation systems indicated the involvement of the cytochrome P-450-dependent monooxygenases in the metabolism of precocene II and the concurrent covalent binding. The most predominent metabolite was isolated and accounted for >90% of the radioactivity associated with the ethylacetate-extractable metabolites. Further analysis by mass spectrometry and proton nuclear magnetic resonance (NMR) spectroscopy identified it as a 37 : 63 stereoisomeric mixture of the cis and trans 3,4-dihydrodiols of precocene II. A highly reactive (3,4-epoxy-6,7-dimethyl-2,2-dimethylchromane (precocene-3,4-epoxide) was thus suggested as a crucial metabolic intermediate which may be responsible for the histopathological changes seen in rat liver.  相似文献   

12.
An isocratic reversed-phase high-performance liquid chromatographic (HPLC) method using an Ultrasphere IP column has been developed for the determination of testosterone and its metabolites after incubation of 4-14C-labelled or unlabelled testosterone with rat liver microsomes. Compounds were eluted with methanol-water-tetrahydrofuran (35:55:10, v/v, pH 4.0) and detected by ultraviolet (UV) absorption at 245 nm. UV or on-line radioactivity detection can be used although, due to differences in detector cell volumes, peak resolution is slightly better with UV detection. Selectivity was validated by collecting HPLC peaks and verifying their identity by gas chromatography-mass spectrometry after derivatization by N,O-bis(trimethylsily)trifluoroacetamide-trimethylchlorosilane. A three-day validation was performed to determine the linearity, repeatability, reproducibility and accuracy of the method, using corticosterone as internal standard. The method is applicable to the measurement of cytochrome P-450 isoenzyme activities in rat liver.  相似文献   

13.
Yao JF  Zhou N  Lv YJ  Zhang R  Liu KL  Xue M 《Amino acids》2012,43(4):1557-1566
Long-acting luteinizing hormone-releasing hormone (LHRH) antagonists designed to be protease resistant consisted of a series of novel decapeptides structurally similar to LHRH. The aim of this study was to evaluate the in vitro metabolic stability of the LHRH decapeptides using pancreatin and homogenates models and identify the metabolites in rat liver homogenate for the purpose of illustrating the metabolic features of the decapeptides. The major metabolites in rat liver homogenate were identified by LC-ESI-MS(n). The half-lives of the 11 LHRH decapeptides were from 44 to 330?min in the pancreatin model. The half-lives of the five decapeptides in rat liver, kidney and lung homogenates were between 8 and 462?min. The most stable decapeptides were the LY616 and LY608 peptides with half-lives of 36?min in liver homogenate. Two major cleavage sites were found by analysing the metabolites of the LY618 peptide in rat liver homogenate, between the Pal(3)-Ser(4) and the Leu(7)-Ilys(8) peptide bonds. The major metabolites were produced via cleavages of peptide bonds at these sites, and further metabolic reactions such as hydroxylation, oxidative dechlorination, alcohol dehydration and isopropyl dealkylation were also observed.  相似文献   

14.
The inhibitory effect of NK-104, a potent inhibitor of HMG-CoA reductase, on taxol metabolism was examined using radio-TLC. This method is described for in vitro measurement of taxol metabolites as an alternative to the commonly used HPLC assay. After incubation of 14C-taxol with human liver microsomes, the supernatants were developed using a solvent system consisting of toluene–acetone–formic acid (60:39:1, v/v) and quantified with a bioimaging analyzer. The described method provides a valuable tool for the simultaneous determination of unchanged taxol and its major metabolites. There was no inhibitory effect of NK-104 on CYP-mediated metabolism of taxol in human liver microsomes.  相似文献   

15.
应用体外肝微粒体孵育体系,考察胡椒碱在人、SD大鼠、小鼠、恒河猴和比格犬5个种属肝微粒体中的代谢稳定性,比较代谢的种属差异,确定其在人肝微粒体中的代谢表型。通过UFLC-MS/MS检测方法,测定胡椒碱在各个种属肝微粒体中孵育后的剩余浓度,考察他们的代谢稳定性及体外代谢动力学参数。采用化学抑制法考察胡椒碱在人肝微粒体中的代谢表型。结果表明胡椒碱在人、SD大鼠、小鼠、恒河猴和比格犬的肝微粒体中,半衰期T1/2分别为31. 36、48. 46、138. 60、147. 45、165. 00 min;体外固有清除率CLint分别为0. 0442、0. 0286、0. 0100、0. 0094、0. 0084m L/(m L·mg);在人肝微粒体中,胡椒碱主要被CYP3A4和CYP2C9酶代谢。推测胡椒碱在各种肝微粒体中的代谢均相对较稳定,其中大鼠和人的肝微粒体代谢性质最相近,在后续的实验中可以考虑用大鼠的代谢结果预测人的代谢结果;人肝微粒体中参与胡椒碱代谢的酶主要有CYP3A4和CYP2C9。  相似文献   

16.
[1-14C] Arachidonic (eicosatetraenoic) acid was incubated at 37 degrees C for 15 min with rabbit liver microsomes fortified with NADPH (1 mM). The products were purified by high-pressure liquid chromatography (HPLC) and analyzed by gas chromatography-mass spectrometry. Based on polarity on reversed phase HPLC, the metabolites could be divided into three groups. The major metabolites of lowest polarity were 19- and 20-hydroxyarachidonic acid and 19-oxoarachidonic acid. The major metabolites of medium polarity were two diols, 14,15-dihydroxy-5,-8,11-eicosatrienoic acid and 11,12-dihydroxy-5,8,14-eicosatrienoic acid. Microsomal incubation under atmospheric isotopic oxygen led to incorporation of only one 18O molecule in each diol, indicating that the diols could originate from breakdown of 14(15)-oxido-5,8,11-eicosatrienoic acid and 11(12)-oxido-5,8,14-eicosatrienoic acid, respectively. Major metabolites in the most polar group were 14,15,19- and 14,15,20-trihydroxy-5,8,11-eicosatrienoic acid. 11,12,19- and 11,12,20-trihydroxy-5,8,14-eicosatrienoic acid and 11,12-dihydroxy-19-oxo-5,8,-14-eicosatrienonic acid. About 0.5% of exogenous radioactively labelled arachidonic was covalently bound to microsomal proteins. The metabolites and the protein-bound products were formed in considerably smaller amounts by non-fortified microsomes. Carbon monoxide inhibited this pathway of arachidonic acid metabolism, indicating that these reactions might be catalyzed by the cytochrome P-450-linked monooxygenase systems.  相似文献   

17.
In order to determine whether CCl4, CBrCl3, CBr4 or CHCl3 undergo oxidative metabolism to electrophilic halogens by liver microsomes, they were incubated with liver microsomes from phenobartital pretreated rats in the presence of NADPH and 2,6-dimethylphenol. The analysis of the reaction mixtures by capillary gas chromatography mass spectrometry revealed that 4-chloro-2,6-dimethylphenol was a metabolite of CCl4 and CBrCl3 whereas 4-bromo-2,6-dimethylphenol was a metabolite of CBr4. The formation of the metabolites was significantly decreased when the reactions were conducted with heat denatured microsomes, in the absence of NADPH or under an atmosphere of N2. These results indicate that the chlorines of CBrCl3 and CCl4 and the bromines of CBr4 are oxidatively metabolized by rat liver microsomes to electrophilic and potentially toxic metabolites.  相似文献   

18.
Thromboxane B2 (TxB2) was biosynthesized from prostaglandin endoperoxides (PGG2, PGH2) using guinea pig lung microsomes and infused into an unanesthetized monkey. Urine was collected and TxB2 metabolites were isolated by reversed phase partition chromatography and high performance liquid chromatography. A major metabolite (TxB2-M) was found to be excreted in greater than two-fold abundance relative to other metabolites. Its structure was determined by gas chromatography-mass spectrometry to be dinor-thromboxane B2. In vitro incubation of TxB2 with rat liver mitochondria yielded a C18 derivative with a mass spectrum identical to that of TxB2-M, substantiating that the major urinary metabolite of TxB2 in the monkey is a product of a single step of beta-oxidation.  相似文献   

19.
Incubation of [14C]benzene or [14C]phenol with liver microsomes from untreated rats, in the presence of a NADPH-generating system, gave rise to irreversible binding of metabolites to microsomal macromolecules. For both substrates this binding was inhibited by more than 50% by addition of superoxide dismutase to the incubation mixtures. The decrease in binding was compensated for by accumulation of [14C]hydroquinone, indicating superoxide-mediated oxidation of hydroquinone as one step in the activation of benzene to metabolites binding to microsomal macromolecules. Since our previous work had shown that binding occurred mainly with protein rather than ribonucleic acid and was virtually completely prevented by glutathione, suggesting identity of metabolite(s) responsible for binding to protein and glutathione, a conjugate was chemically prepared from p-benzoquinone and reduced glutathione (GSH) and identified by field desorption mass spectrometry (FDMS) as 2-(S-glutathionyl) hydroquinone. Microsomal incubations, containing an NADPH-generating system, with benzene, phenol, hydroquinone or p-benzoquinone in the presence of [3H]glutathione or, alternatively, with [14C]benzene or [14C]phenol in the presence of unlabeled glutathione, were performed. All of these incubations gave rise to a peak of radioactivity eluting from the high pressure liquid chromatograph (HPLC) at a retention time identical to that of the chemically prepared 2-(S-glutathionyl) hydroquinone, whilst microsomal incubation of catechol in the presence of [3H]glutathione led to a conjugate with a very different retention time which was not observed after incubation of benzene or phenol. The microsomal metabolites of p-benzoquinone, hydroquinone and phenol thus eluting from the HPLC were further identified as the 2-(S-glutathionyl) hydroquinone by field desorption mass spectrometry. The glutathione adduct formed from benzene during microsomal activation eluted from HPLC with the same retention time and its mass spectrum also contained the molecular ion (MH+) (m/e 416) of this conjugate as an intense peak, but the fragmentation patterns did not allow definite assignments probably due to the considerably smaller amounts of ultimate reactive metabolites formed from this pre-precursor and thus relatively larger amounts of impurities.The results indicate that rat liver microsomes activate benzene via phenol and hydroquinone to p-benzosemiquinone and/or p-benzoquinone as quantitatively important reactive metabolites.  相似文献   

20.
Oxidation of 2-phenylthiophene (2PT) by rat liver microsomes, in the presence of NADPH and glutathione (GSH), led to three kinds of metabolites whose structures were established by 1H NMR and mass spectrometry. The first ones were 2PT-S-oxide dimers formed by Diels-Alder type dimerization of 2PT-S-oxide, while the second ones were GSH adducts derived from the 1,4-Micha?l-type addition of GSH to 2PT-S-oxide. The third metabolites were GSH adducts resulting from a nucleophilic attack of GSH to the 4,5-epoxide of 2PT. Oxidation of 2PT by recombinant, human cytochrome P4501A1, in the presence of NADPH and GSH, also led to these three kinds of metabolites. These results provide the first evidence that cytochrome P450 may catalyze the oxidation of thiophene compounds with the simultaneous formation of two reactive intermediates, a thiophene-S-oxide and a thiophene epoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号