首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present work describes three novel nonpolar host peptide sequences that provide a ready assessment of the 310- and α-helix compatibilities of natural and unnatural amino acids at different positions of small- to medium-size peptides. The unpolar peptides containing Ala, Aib, and a C-terminal p-iodoanilide group were designed in such a way that the peptides could be rapidly assembled in a modular fashion, were highly soluble in solvent mixtures of triflouroethanol and H2O for CD- and two-dimensional (2D) nmr spectroscopic analyses, and showed excellent crystallinity suited for x-ray structure analysis. To validate our approach we synthesized 9-mer peptides 79a–96 (Table IV), 12-mer peptides 99–110c (Table V), and 10-mer peptides 120a–125d and 129–133 (Table VI and Scheme 8) incorporating a series of optically pure cyclic and open-chain (R)- and (S)-α,α-disubstituted glycines 1–10 (Figure 2). These amino acids are known to significantly modulate the conformations of small peptides. Based on x-ray structures of 9-mers 79a, 80, and 87 (Figures 4–7), 10-mers 124c, 131, and 132 (Figures 9–12), and 12-mer peptide 102b (Figure 13), CD spectra of all peptides recorded in acidic, neutral, and basic media and detailed 2D-nmr analyses of 9-mer peptide 86 and 12-mer 102b, several interesting conformational observations were made. Especially interesting results were obtained using the convex constraint CD analysis proposed by Fasman on 9-mer peptides 79a–d, 80, 81, 86, and 87, which allowed us to determine the relative content of 310- and α-helical conformations. These results were fully supported by the corresponding x-ray and 2D-nmr analyses. As a striking example we found that the (S)- and (R)-β-tetralin derived amino acids (R)- and (S)-1 show excellent α-helix stabilisation, more pronounced than Aib and Ala. These novel reference peptide sequences should help establish a scale for natural and unnatural amino acids concerning their intrinsic 310- and α-helix compatibilities at different positions of medium-sized peptides and thus improve our understanding in the folding processes of peptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 575–626, 1997  相似文献   

2.
The NOAH/DIAMOD suite uses feedback filtering and self-correcting distance geometry to generate 3D structures from unassigned NOESY spectra. In this study we determined the minimum set of experiments needed to generate a high quality structure bundle. Different combinations of 3D 15N-edited, 13C-edited HSQC-NOESY and 2D homonuclear 1H-1H NOESY spectra of the 77 amino acid protein, myeloid progenitor inhibitory factor-1 (MPIF-1) were used as input for NOAH/DIAMOD calculations. The quality of the assignments of NOESY cross peaks and the accuracy of the automatically generated 3D structures were compared to those obtained with a conventional manual procedure. Combining data from two types of experiments synergistically increased the number of peaks assigned unambiguously in both individual spectra. As a general trend for the accuracy of the structures we observed structural variations in the backbone fold of the final structures of about 2 Å for single spectral data, of 1 Å to 1.5 Å for double spectral data, and of 0.6 Å for triple spectral data sets. The quality of the assignments and 3D structures from the optimal data using all three spectra were similar to those obtained from traditional assignment methods with structural variations within the bundle of 0.6 Å and 1.3 Å for backbone and heavy atoms, respectively. Almost all constraints (97%) of the automatic NOESY cross peak assignments were cross compatible with the structures from the conventional manual assignment procedure, and an even larger proportion (99%) of the manually derived constraints were compatible with the automatically determined 3D structures. The two mean structures determined by both methods differed only by 1.3 Å rmsd for the backbone atoms in the well-defined regions of the protein. Thus NOAD/DIAMOD analysis of spectra from labeled proteins provides a reliable method for high throughput analysis of genomic targets.  相似文献   

3.
Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-domain signals S(t 3), as a function of two time variables (t 1, t 2) which need to undergo parametric incrementations throughout independent experiments. Recent years have witnessed extensive efforts towards the acceleration of this kind of experiments. Among the different approaches that have been proposed counts an “ultrafast” scheme, which distinguishes itself from other propositions by enabling—at least in principle—the acquisition of the complete multidimensional NMR data set within a single transient. 2D protein NMR implementations of this single-scan method have been demonstrated, yet its potential for 3D acquisitions has only been exemplified on model organic compounds. This publication discusses a number of strategies that could make these spatial encoding protocols compatible with 3D biomolecular NMR applications. These include a merging of 2D ultrafast NMR principles with temporal 2D encoding schemes, which can yield 3D HNCO spectra from peptides and proteins within ≈100 s timescales. New processing issues that facilitate the collection of 3D NMR spectra by relying fully on spatial encoding principles are also assessed, and shown capable of delivering HNCO spectra within 1 s timescales. Limitations and prospects of these various schemes are briefly addressed.  相似文献   

4.
Central to structural studies of biomolecules are multidimensional experiments. These are lengthy to record due to the requirement to sample the full Nyquist grid. Time savings can be achieved through undersampling the indirectly-detected dimensions combined with non-Fourier Transform (FT) processing, provided the experimental signal-to-noise ratio is sufficient. Alternatively, resolution and signal-to-noise can be improved within a given experiment time. However, non-FT based reconstruction of undersampled spectra that encompass a wide signal dynamic range is strongly impeded by the non-linear behaviour of many methods, which further compromises the detection of weak peaks. Here we show, through an application to a larger α-helical membrane protein under crowded spectral conditions, the potential use of compressed sensing (CS) l (1)-norm minimization to reconstruct undersampled 3D NOESY spectra. Substantial signal overlap and low sensitivity make this a demanding application, which strongly benefits from the improvements in signal-to-noise and resolution per unit time achieved through the undersampling approach. The quality of the reconstructions is assessed under varying conditions. We show that the CS approach is robust to noise and, despite significant spectral overlap, is able to reconstruct high quality spectra from data sets recorded in far less than half the amount of time required for regular sampling.  相似文献   

5.
The question is addressed of how maximal structural NOE data on double labelled proteins can be acquired with a minimal set of NOESY experiments. Two 3D-NOESY spectra are reported which, in concert with other commonly used spectra, provide a convenient strategy for NOE assignment. The 3D CNH-NOESY and 3D NCH-NOESY provide NOE connectivities between amide protons and carbon-bound protons and constitute orthogonal heteronuclear filters which eliminate diagonal signals, considerably improving spectral quality. Two different heteronuclear chemical shift dimensions are recorded in the spectra, thus exploiting the extra dispersion of the heteronucleus and considerably simplifying assignment.  相似文献   

6.
Summary A method for quantitative determination of cross-relaxation rates of macromolecules in solution is developed. The method is based on the analysis of the intensities of cross peaks in 3D NOE-NOE spectra. The linear combination of the intensities of 3D peaks (spin-diffusion peaks, back-transfer peaks) results in an expression directly proportional to the cross-relaxation rate. The proposed approach allows to determine interproton distances in macromolecules more accurately.  相似文献   

7.
Mass spectra and fragmentation patterns of the epimeric 17-, 16-, 15- and 14-hydroxy derivatives of 3-methoxy-1,3,5(10)-estratriene are compared. The main fragmentation pathways are differently influenced, depending on the position of the hydroxy group. The different configuration of the hydroxy groups is reflected only in the spectra of the epimeric 15- and 14-hydroxy compounds. Possibilities of mass spectrometric differentiation between the hydroxyestratrienes are discussed.  相似文献   

8.
In this research project, a colloidal solution of silver nanocubes was synthesized and using these nanocubes as building blocks, 2D and 3D ordered structures on solid supports were fabricated to study their optical properties and refractive index sensitivities. The silver nanocubes were synthesized by the polyol reduction process while their 2D and 3D ordered structures were fabricated by Langmuir-Blodgett trough (LB). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to investigate the size and shape of the nanostructures as well as the morphologies of 2D and 3D structures. UV-visible absorption spectroscopy was employed to explore their optical properties. Finally, 2D and 3D assemblies of silver nanocubes were employed to investigate their refractive index sensitivity (RIS). The SEM image showed silver nanocubes with nominal edge length of 80 nm. Extinction spectra of 2D and 3D ordered structures are different than those in a colloidal state. Intensity of the plasmon resonance modes is higher for the 3D assembly than that of the 2D assembly. A new band in the low energy region of the spectrum appears for the 3D assembly because of interparticle coupling of the plasmon resonance modes. 3D assembly showed a higher RIS (158.9/ RIU) than of the 2D assembly (150.3/RIU). However, nanocubes are less ordered in 2D substrate than its counterpart 3D. Such 2D and 3D assemblies of silver nanocubes (AgNCs) could be potential candidates for making refractive index-based sensors as well as promising surface-enhanced Raman scattering (SERS) active substrates.  相似文献   

9.
The Escherichia coli inner membrane enzyme DsbB catalyzes disulfide bond formation in periplasmic proteins, by transferring electrons to ubiquinone from DsbA, which in turn directly oxidizes cysteines in substrate proteins. We have previously shown that DsbB can be prepared in a state that gives highly resolved magic-angle spinning (MAS) NMR spectra. Here we report sequential 13C and 15N chemical shift assignments for the majority of the residues in the transmembrane helices, achieved by three-dimensional (3D) correlation experiments on a uniformly 13C, 15N-labeled sample at 750-MHz 1H frequency. We also present a four-dimensional (4D) correlation spectrum, which confirms assignments in some highly congested regions of the 3D spectra. Overall, our results show the potential to assign larger membrane proteins using 3D and 4D correlation experiments and form the basis of further structural and dynamical studies of DsbB by MAS NMR.  相似文献   

10.
Summary A new method, which employs a sequence of heteronuclear-homonuclear-heteronuclear Hartmann-Hahn (HEHOHEHAHA) cross-polarization steps for obtaining through-bond H-C-C-H correlations in larger proteins (Mr > 15 kDa), is presented. The method has significantly higher sensitivity compared to INEPTHOHAHA-INEPT-based techniques. An additional feature of this experiment is that well-phaseable spectra may be obtained with a minimal (4-step) phase cycle and, consequently, experimental time can be utilized towards obtaining high resolution in indirect dimensions. Results from 2D and 3D HEHOHEHAHA experiments on T4-lysozyme are presented.  相似文献   

11.
Z V Zaretskii 《Steroids》1979,33(5):595-599
The mass spectral elimination of water in epimeric 1,3-diols of vitamin D3 (colecalciferol) series has been investigated. It was found that the mass spectra of these steroisomers differ sharply in the relative intensities of the ions M-H2O (m/e 382) and a-H2O (m/e +/- 34), where ion a (formed via formal cleavage of the 7, 8-double bond) is characteristic of vitamin D3 and its derivatives. So while epimeric 1, 3-diols of vitamin D3 series have very close UV and NMR characteristics, the comparison of the ratios of the peaks M-H2O and M.+, a-H2O and a, respectively, makes it possible to distinguish between stereoisomeric 1 alpha, 3 beta-, 1 beta, 3 beta-, 1 alpha, 3 alpha- and 1 beta, 3 alpha-diols using their mass spectra.  相似文献   

12.
One still cannot predict the 3D fold of a protein from its amino acid sequence, mainly because of errors in the energy estimates underlying the prediction. However, a recently developed theory [1] shows that having a set of homologs (i.e., the chains with equal, in despite of numerous mutations, 3D folds) one can average the potential of each interaction over the homologs and thus predict the common 3D fold of protein family even when a correct fold prediction for an individual sequence is impossible because the energies are known only approximately. This theoretical conclusion has been verified by simulation of the energy spectra of simplified models of protein chains [2], and the further investigation of these simplified models shows that their true "native" fold can be found by folding of the chain where each interaction potential is averaged over the homologs. In conclusion, the applicability of the "homolog-averaging" approach is tested by recognition of real protein 3D structures. Both the gapless threading of sequences onto the known protein folds [3] and the more practically important gapped threading (which allows to consider not only the known 3D structures, but the more or less similar to them folds as well) shows a significant increase in selectivity of the native chain fold recognition.  相似文献   

13.
Ligands possessing dual vitamin D3-agonistic (estimated as HL-60 monocytic cell differentiation induction) and androgen-antagonistic (estimated as testosterone-induced SC-3 cell growth inhibition) activities with various activity spectra were prepared based on a substituted bis-phenylmethane skeleton. Some of them were revealed to be potent androgen antagonists with a nonsecosteroidal vitamin D3 skeleton.  相似文献   

14.
《Cryobiology》2016,72(3):518-521
We describe a new cryogenic 3D printing technology for freezing hydrogels, with a potential impact to tissue engineering. We show that complex frozen hydrogel structures can be generated when the 3D object is printed immersed in a liquid coolant (liquid nitrogen), whose upper surface is maintained at the same level as the highest deposited layer of the object. This novel approach ensures that the process of freezing is controlled precisely, and that already printed frozen layers remain at a constant temperature. We describe the device and present results which illustrate the potential of the new technology.  相似文献   

15.
Vitamin D3-3 beta-sulfate has been synthesized using pyridine sulfur trioxide as the sulfate donor. It has been shown to be pure by high performance liquid chromatography and spectral methods. Unlike previous reports, the product has been identified unambiguously as the 3 beta-sulfate ester of vitamin D3 by its ultraviolet, nuclear magnetic resonance, infrared, and mass spectra. The biological activity of vitamin D3-sulfate was then determined in vitamin D-deficient rats. Vitamin D3-sulfate has less than 5% of the activity of vitamin D3 to mobilize calcium from bone and approximately 1% of the ability of vitamin D3 to stimulate calcium transport, elevate serum phosphorus, or support bone calcification. These results disprove previous claims that vitamin D3-sulfate has potent biological activity, and they further do not support the contention that vitamin D-sulfate represents a potent water-soluble form of vitamin D in milk.  相似文献   

16.
Concomitant intravenous administration of 25-hydroxycholecalciferol and [3H] vitamin D3 to vitamin D-depleted rats did not affect the conversion of [3H] vitamin D3 to 25-OH-[3H] vitamin D3 as indicated by a serum 25-OH-[3H] vitamin D3 to content at 3 and 24 h identical to those observed in animals receiving [3H] vitamin D3 alone. Similarly, pre-dosing with 25-OH vitamin D3 24 h earlier did not affect the conversion. Co-administration to vitamin D depleted rats of vitamin D2 or D3, at 200-fold higher doses than a control group receiving tracer [3H] vitamin D3 alone, resulted in serum 25-OH vitamin D levels that were 15-20 fold higher than the control, indicating a similar metabolic fate for synthetic and natural vitamin D in rats and the ability of increased substrate to overwhelm hepatic constraints on 25-OH vitamin D production. Following intravenous administration of 25-OH-[3H] vitamin D3 to vitamin D depleted rats, hepatic 3H content decreased in parallel with serum radioactivity. Hepatic accumulation of intravenously administered vitamin D3 ([14C] vitamin D3) alone or with 25-OH-[3H] vitamin D3, by vitamin D-depleted rats revealed a marked preference for vitamin D3; the hepatic accumulation of [14C] vitamin D3 increased to 35% of the dose by 45 min, at which time 25-OH-[3H] vitamin D3 hepatic content was 7-fold less, and decreasing. Chromatography of extracts of hepatic subcellular fractions revealed more [14C] vitamin D3 than 25-OH-[3H] vitamin D3 in the microsomes, the reported site of calciferol 25-hydroxylase. Circulating 25-OH vitamin D, therefore, has comparatively minimal potential for hepatic accumulation. Product inhibition of the calciferol 25-hydroxylase must, therefore, result from recently synthesized hepatic 25-OH vitamin D, and is not affected by exogenous 25-OH vitamin D3.  相似文献   

17.
The fluorescent dye 3,3'-dipropylthiadicarbocyanine, diS-C(3)(3), is a suitable probe to monitor real changes of plasma membrane potential in yeast cells which are too small for direct membrane potential measurements with microelectrodes. A method presented in this paper makes it possible to convert changes of equilibrium diS-C(3)(3) fluorescence spectra, measured in yeast cell suspensions under certain defined conditions, into underlying membrane potential differences, scaled in the units of millivolts. Spectral analysis of synchronously scanned diS-C(3)(3) fluorescence allows to assess the amount of dye accumulated in cells without otherwise necessary sample taking and following separation of cells from the medium. Moreover, membrane potential changes can be quantified without demanding calibration protocols. The applicability of this approach was demonstrated on the depolarization of Rhodotorula glutinis yeast cells upon acidification of cell suspensions and/or by increasing extracellular K(+) concentration.  相似文献   

18.
The Fourier transform Raman and infrared (IR) spectra of the Ceramide 3 (CER3) have been recorded in the regions 200–3500 cm? 1 and 680–4000 cm? 1, respectively. We have calculated the equilibrium geometry, harmonic vibrational wavenumbers, electrostatic potential surfaces, absolute Raman scattering activities and IR absorption intensities by the density functional theory with B3LYP functionals having extended basis set 6-311G. This work is undertaken to study the vibrational spectra of CER3 completely and to identify the various normal modes with better wavenumber accuracy. Good consistency is found between the calculated results and experimental data for the IR and Raman spectra.  相似文献   

19.
24,25-Dihydroxyvitamin D (24,25VD) is a major catabolite of 25-hydroxyvitamin D (25VD) metabolism, and may be physiologically active. Our objectives were to: (1) characterize the response of serum 24,25VD(3) to vitamin D(3) (VD(3)) supplementation; (2) test the hypothesis that a higher 24,25VD(3) to 25VD(3) ratio (24,25:25VD(3)) predicts 25VD(3) response. Serum samples (n=160) from wk 2 and wk 6 of a placebo-controlled, randomized clinical trial of VD(3) (28,000IU/wk) were analyzed for serum 24,25VD(3) and 25VD(3) by mass spectrometry. Serum 24,25VD(3) was highly correlated with 25VD(3) in placebo- and VD(3)-treated subjects at each time point (p<0.0001). At wk 2, the 24,25:25VD(3) ratio was lower with VD(3) than with placebo (p=0.035). From wk 2 to wk 6, the 24,25:25VD(3) ratio increased with the VD(3) supplement (p<0.001) but not with placebo, such that at wk 6 this ratio did not significantly differ between groups. After correcting for potential confounders, we found that 24,25:25VD(3) at wk 2 was inversely correlated to the 25VD(3) increment by wk 6 in the supplemented group (r=-0.32, p=0.02) but not the controls. There is a strong correlation between 24,25VD(3) and 25VD(3) that is only modestly affected by VD(3) supplementation. This indicates that the catabolism of 25VD(3) to 24,25VD(3) rises with increasing 25VD(3). Furthermore, the initial ratio of serum 24,25VD(3) to 25VD(3) predicted the increase in 25VD(3). The 24,25:25VD(3) ratio may therefore have clinical utility as a marker for VD(3) catabolism and a predictor of serum 25VD(3) response to VD(3) supplementation.  相似文献   

20.
We present here the computer program AUREMOL-RFAC-3D that is a generalization of the previously published program RFAC for the fully automated estimation of residual indices (R-factors) from 2D NOESY spectra. It is part of the larger AUREMOL software package (www.auremol.de). RFAC-3D calculates R-factors directly from two-dimensional homonuclear NOESY spectra as well as from three-dimensional 15N or 13C edited NOESY-HSQC spectra and thus extends the application range to larger proteins. The fully automated method includes automated peak picking and integration, a Bayesian noise and artifact recognition and the use of the complete relaxation matrix formalism. To enhance the reliability of the calculated R-factors the method is also generalized to calculate combined R-factors from a set of 2D and 3D-spectra. For an optimal combination of the information derived from different sources a plausible formalism had to be derived. In addition, we present a novel direct R-factors based measure that correlates an R-factors as defined in this paper to the root mean square deviation of the actual structure from the optimal structure. The new program has been successfully tested on the histidine containing phosphocarrier protein (HPr) from Staphylococcus carnosus and on the Ras-binding domain (RBD) of the Ral guanine-nucleotide dissociation stimulation factor (RalGDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号