首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to differentiate the effects of repeated antecedent hypoglycemia, antecedent marked hyperinsulinemia, and antecedent increases in corticosterone on counterregulation to subsequent hypoglycemia in normal rats. Specifically, we examined whether exposure to hyperinsulinemia or elevated corticosterone per se could impair subsequent counterregulation. Four groups of male Sprague-Dawley rats were used: 1) normal controls (N) had 4 days of sham antecedent treatment; 2) an antecedent hypoglycemia group (AH) had 7 episodes of hyperinsulinemic hypoglycemia over 4 days; 3) an antecedent hyperinsulinemia group (AE) had 7 episodes of hyperinsulinemic euglycemia; and 4) an antecedent corticosterone group (AC) had 7 episodes of intravenous corticosterone to simulate the hypoglycemic corticosterone levels in AH rats. On day 5, hyperinsulinemic euglycemic-hypoglycemic clamps were performed. Epinephrine responses to hypoglycemia were impaired (P < 0.05 vs. N) after antecedent hypoglycemia and hyperinsulinemia. This correlated with diminished (P < 0.05 vs. N) absolute glucose production responses in AH rats and diminished incremental glucose production responses in AE rats. Paradoxically, norepinephrine responses were increased (P < 0.05 vs. N) after antecedent hypoglycemia. Glucagon and corticosterone responses were unaffected by antecedent hypoglycemia and hyperinsulinemia. In AC rats, incremental but not absolute glucose production responses were decreased (P < 0.05 vs. N). However, neuroendocrine counterregulation was unaltered. We conclude that both antecedent hypoglycemia and hyperinsulinemia impair epinephrine and glucose production responses to subsequent hypoglycemia, suggesting that severe recurrent hyperinsulinemia may contribute to the development of hypoglycemia-associated autonomic failure.  相似文献   

2.
Epinephrine, norepinephrine, and corticosterone responses to hypoglycemia are impaired in diabetic rats. Recurrent hypoglycemia further diminishes epinephrine responses. This study examined the sympathoadrenal system and hypothalamo-pituitary-adrenal axis for molecular adaptations underlying these defects. Groups were normal (N) and diabetic (D) rats and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (D-hypo) or hyperinsulinemic hyperglycemia (D-hyper). D-hypo and D-hyper rats differentiated effects of hypoglycemia and hyperinsulinemia. Adrenal tyrosine hydroxylase (TH) mRNA was reduced (P < 0.05 vs. N) 25% in all diabetic groups. Remarkably, mRNA for phenylethanolamine N-methyltransferase (PNMT), which converts norepinephrine to epinephrine, was reduced (P < 0.05 vs. all) 40% only in D-hypo rats. Paradoxically, dopamine beta-hydroxylase mRNA was elevated (P < 0.05 vs. D, D-hyper) in D-hypo rats. Hippocampal mineralocorticoid receptor (MR) mRNA was increased (P < 0.05 vs. N) in all diabetic groups. Hippocampal glucocorticoid receptor (GR), hypothalamic paraventricular nucleus (PVN) GR and corticotropin-releasing hormone (CRH), and pituitary GR and proopiomelanocortin (POMC) mRNA levels did not differ. We conclude that blunted corticosterone responses to hypoglycemia in diabetic rats are not due to altered basal expression of GR, CRH, and POMC in the hippocampus, PVN, and pituitary. The corticosterone defect also does not appear to be due to increased hippocampal MR, since we have reported normalized corticosterone responses in D-hypo and D-hyper rats. Furthermore, impaired epinephrine counterregulation in diabetes is associated with reduced adrenal TH mRNA, whereas the additional epinephrine defect after recurrent hypoglycemia is associated with decreases in both TH and PNMT mRNA.  相似文献   

3.
D G Patel 《Life sciences》1989,44(4):301-310
Effects of acute sodium salicylate infusion on glucagon and epinephrine responses to insulin hypoglycemia were studied in streptozotocin diabetic and age-matched control rats. Sodium salicylate (50 mg/kg/h) was infused intravenously alone for 90 minutes and then with insulin in short-term (10-15 days post-streptozotocin) and long-term (80-100 days post-streptozotocin) diabetic as well as age-matched control rats to produce hypoglycemia. Sodium salicylate decreased basal plasma glucose in control and diabetic rats but increased basal plasma glucagon levels only in control rats. The infusion of sodium salicylate during insulin-hypoglycemia in control and short-term diabetic rats caused a significant increase in glucagon secretion. Long-term diabetic rats have impaired glucagon and epinephrine secretory responses to insulin-hypoglycemia. This defect was normalized by acute sodium salicylate infusion during insulin-hypoglycemia. However, indomethacin (5 mg/kg i.p.; twice at 18 hr intervals) improved, but failed to completely normalize the abnormal glucagon and epinephrine secretory responses to insulin-hypoglycemia in long-term diabetic rats. These results suggest that endogenous prostaglandins may play a partial role in the impairment of glucagon and epinephrine secretion in response to insulin-hypoglycemia in long-term diabetic rats.  相似文献   

4.
Individuals with type 1 diabetes demonstrate a hypoglycemia-specific defect in glucagon secretion. To determine whether intraislet hyperinsulinemia plays a role in the genesis of this defect, glucagon-secretory responses to moderate hypoglycemia induced by either insulin or a novel combination of the noninsulin glucose-lowering agents 5-aminoimidazole-4-carboxamide (AICAR) and phlorizin were compared in diabetic BB rats (an animal model of type 1 diabetes) and nondiabetic BB rats. The phlorizin-AICAR combination was able to induce moderate and equivalent hypoglycemia in both diabetic and nondiabetic BB rats in the absence of marked hyperinsulinemia. Diabetic BB rats demonstrated impaired glucagon and epinephrine responses during insulin-induced hypoglycemia compared with nondiabetic rats. In contrast, both glucagon (9- to 10-fold increase) and epinephrine (5- to 6-fold increase) responses were markedly improved during phlorizin-AICAR hypoglycemia. Combining phlorizin, AICAR, and insulin attenuated the glucagon response to hypoglycemia by 70% in the diabetic BB rat. Phlorizin plus AICAR had no effect on counterregulatory hormones under euglycemic conditions. We conclude that alpha-cell glucagon secretion in response to hypoglycemia is not defective if intraislet hyperinsulinemia is prevented. This suggests that exogenous insulin plays a pivotal role in the etiology of this defect.  相似文献   

5.
Glucocorticoids have been implicated in hypoglycemia-induced autonomic failure but also contribute to normal counterregulation. To determine the influence of normal and hypoglycemia-induced levels of glucocorticoids on counterregulatory responses to acute and repeated hypoglycemia, we compared plasma catecholamines, corticosterone, glucagon, and glucose requirements in male wild-type (WT) and glucocorticoid-deficient, corticotropin-releasing hormone knockout (CRH KO) mice. Conscious, chronically cannulated, unrestrained WT and CRH KO mice underwent a euglycemic (Prior Eu) or hypoglycemic clamp (Prior Hypo) on day 1 followed by a hypoglycemic clamp on day 2 (blood glucose both days, 65 +/- 1 mg/dl). Baseline epinephrine and glucagon were similar, and norepinephrine was elevated, in CRH KO vs. WT mice. CRH KO corticosterone was almost undetectable (<1.5 microg/dl) and unresponsive to hypoglycemia. CRH KO glucose requirements were significantly higher during day 1 hypoglycemia despite epinephrine and glucagon responses that were comparable to or greater than those in WT. Hyperinsulinemic euglycemia did not increase hormones or glucose requirements above baseline. On day 2, Prior Hypo WT had significantly higher glucose requirements and significantly lower corticosterone and glucagon responses. Prior Hypo and Prior Eu CRH KO mice had similar day 2 glucose requirements. However, Prior Hypo CRH KO mice had significantly lower day 2 epinephrine and norepinephrine vs. Prior Eu CRH KO and tended to have lower glucagon than on day 1. We conclude that glucocorticoid insufficiency in CRH KO mice correlates with 1) impaired counterregulation during acute hypoglycemia and 2) complex effects after repeated hypoglycemia, neither preventing decreased hormone responses nor worsening glucose requirements.  相似文献   

6.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

7.
Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for patients with comorbid diabetes and depression. Clinical case studies in diabetic patients, however, suggest that SSRI therapy may exacerbate hypoglycemia. We hypothesized that SSRIs might increase the risk of hypoglycemia by impairing hormonal counterregulatory responses (CRR). We evaluated the effect of the SSRI sertraline on hormonal CRR to single or recurrent hypoglycemia in nondiabetic rats. Since there are time-dependent effects of SSRIs on serotonin neurotransmission that correspond with therapeutic action, we evaluated the effect of 6- or 20-day sertraline treatment on hypoglycemia CRR. We found that 6-day sertraline (SERT) treatment specifically enhanced the epinephrine response to a single bout of hypoglycemia vs. vehicle (VEH)-treated rats (t = 120: VEH, 2,573 +/- 448 vs. SERT, 4,202 +/- 545 pg/ml, P < 0.05). In response to recurrent hypoglycemia, VEH-treated rats exhibited the expected impairment in epinephrine secretion (t = 60: 678 +/- 73 pg/ml) vs. VEH-treated rats experiencing first-time hypoglycemia (t = 60: 2,081 +/- 436 pg/ml, P < 0.01). SERT treatment prevented the impaired epinephrine response in recurrent hypoglycemic rats (t = 60: 1,794 +/- 276 pgl/ml). In 20-day SERT-treated rats, epinephrine, norepinephrine, and glucagon CRR were all significantly elevated above VEH-treated controls in response to hypoglycemia. Similarly to 6-day SERT treatment, 20-day SERT treatment rescued the impaired epinephrine response in recurrent hypoglycemic rats. Our data demonstrate that neither 6- nor 20-day sertraline treatment impaired hormonal CRR to hypoglycemia in nondiabetic rats. Instead, sertraline treatment resulted in an enhancement of hypoglycemia CRR and prevented the impaired adrenomedullary response normally observed in recurrent hypoglycemic rats.  相似文献   

8.
The effects of oral carbohydrate on modulating counterregulatory responses in humans remain undecided. This study's specific aim was to determine the effects of oral carbohydrate on autonomic nervous system (ANS) and neuroendocrine responses during hyperinsulinemic hypoglycemia and euglycemia. Nineteen healthy volunteers were studied during paired, single blind experiments. Nine subjects underwent two-step glucose clamps consisting of 60 min of euglycemia (5.0 mmol/l) followed by either 15 g of oral carbohydrate (cal) as orange juice or a noncaloric control (nocal) and subsequent 90 min of clamped hypoglycemia (2.9 mmol/l). Ten other subjects underwent two randomized 150-min hyperinsulinemic-euglycemic clamps with cal or nocal control administered at 60 min. Oral carbohydrate initially blunted (P < 0.05) epinephrine, norepinephrine, cortisol, glucagon, pancreatic polypeptide, muscle sympathetic nerve activity (MSNA), symptom, and systolic blood pressure responses during hypoglycemia. However, by the end of 90 min of hypoglycemia, plasma epinephrine and norepinephrine responses had rebounded and were increased (P < 0.05) compared with control. MSNA and cortisol levels remained suppressed during hypoglycemia (P < 0.05) after cal, whereas pancreatic polypeptide, glucagon, symptom, and blood pressure responses increased similar to control following initial suppression. Oral carbohydrate had no effects on neuroendocrine or ANS responses during hyperinsulinemic euglycemia. These results demonstrate that oral carbohydrate can have differential effects on the time course of ANS and neuroendocrine responses during hypoglycemia. We conclude that gastro-splanchnic-portal sensing of an amount of carbohydrate recommended for use in clinical practice for correction of hypoglycemia can have widespread and significant effects on central nervous system mediated counterregulatory responses in healthy humans.  相似文献   

9.
It has been suggested that the increased activity of the sympathetic nervous system and the resultant increase in the tissue catecholamine levels contribute to the pathogenesis of diabetes. In this study we evaluated the effect of clonidine, a central adrenergic agonist that decreases sympathetic tone, on the serum levels of glucose, insulin, glucagon and norepinephrine and on the hepatic glycogen content in normal and streptozotocin-diabetic rats. The animals were treated with clonidine 25 micrograms/kg/day interperitoneally for 3 weeks to suppress the central adrenergic impulses. Clonidine treatment significantly increased the weight gain, but did not affect plasma glucose, insulin, glucagon and norepinephrine in the diabetic animals. Pancreatic insulin and liver glycogen contents were significantly higher in the clonidine-treated than in the untreated diabetic rats. However, clonidine did not affect pancreatic insulin and liver glycogen content of nondiabetic animals. The intravenous administration of glucagon increased plasma glucose in the clonidine-treated, but not in the saline-treated diabetic rats. Insulin-induced hypoglycemia significantly enhanced glucagon release in clonidine-treated but not in saline-treated diabetic rats. We conclude that the suppression of central adrenergic activity may ameliorate the effects of insulin insufficiency on pancreatic hormone secretion and hepatic glycogen content.  相似文献   

10.
Male rats (120 g) either were subjected to a 12-wk physical training program (T rats) or were sedentary controls (C rats). Subsequently the rats were killed at rest or after a 45- or 90-min forced swim. At rest, T rats had higher liver and muscle glycogen concentrations but lower plasma insulin. During exercise, blood glucose increased 60% in T rats but decreased 20% in C rats. Plasma glucagon and insulin concentrations did not change in T rats but plasma glucagon increased and insulin decreased markedly in C rats. Plasma epinephrine (90 min: range, 0.78-2.96 ng-ml-1, (T) vs. 4.42-15.67 (C)) and norepinephrine (90 min: 0.70-2.22 (T) vs. 2.50-6.10 (C)) were lower in T than in C rats. Hepatic glycogen decreased substantially and, as with muscle glycogen, the decrease was parallel in T and C rats. The plasma concentrations of free fatty acids were higher but lactate and alanine lower in T than in C rats. In trained rats the hormonal response to exercise is blunted partly due to higher glucose concentrations. In these rats adipose tissue sensitivity to catecholamines is increased, and changes in glucagon and insulin concentrations are not necessary for increased lipolysis and hepatic glycogen depletion during exercise.  相似文献   

11.
Non-obese type 2 diabetic subjects in good metabolic control (n=6, HbA1c 7.0 +/- 0.3%, mean diabetes duration: 5.7 +/- 1 years) and matched non-diabetic subjects (control; n = 6) were studied during hyperinsulinemic (approximately 3 nmol/l)-hypoglycemic (approximately 3.1 mmol/l) clamp tests (0-120 min) and the subsequent recovery period (120-240 min). Plasma glucagon rose gradually but not significantly, whereas norepinephrine and epinephrine similarly increased approximately 2 and approximately 25-fold in both groups. Islet amyloid polypeptide (IAPP) decreased to approximately 41% and approximately 24% of basal values during hypoglycemia and rapidly rose approximately 4.7-fold during the recovery period, while plasma C-peptide remained suppressed in both groups. Within 140 min, plasma free fatty acids similarly decreased to approximately 70 micromol/l (p < 0.05), but then rose to values being approximately 50% higher in diabetic than in control subjects (240 min: 907 +/- 93 vs. 602 +/- 90 micromol/l; p < 0.05). Glucose infusion rates were comparable during hypoglycemia, but approximately 40% lower during recovery in diabetic patients (1.88 +/- 0.27 vs. 3.44 +/- 0.27 mg x kg(-1) x min(-1), p < 0.001). These results demonstrate that (i) hypoglycemia induced by high-dose insulin largely abolishes the counterregulatory response of glucagon, but not of catecholamines in nondiabetic and well-controlled type 2 diabetic subjects, (ii) the rapid posthypoglycemic increase of plasma IAPP occurs independently of plasma insulin, and (iii) the superior rise in plasma free fatty acids may account at least in part for the posthypoglycemic insulin resistance of type 2 diabetic patients.  相似文献   

12.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

13.
To determine the effects of chronic hyperinsulinemia on glucagon release, rats were made hyperinsulinemic for 14 days by supplementation of drinking water with sucrose (10%; sucrose-fed) to increase endogenous release or by implantation of osmotic minipumps (subcutaneous, s.c.; or intraperitoneal, i.p.) to deliver exogenous insulin (6 U/day). Both s.c. and i.p. rats also had sucrose in the drinking water to prevent hypoglycemia. Plasma insulin levels were significantly elevated in sucrose-fed, s.c., and i.p. rats. However, glucose levels were significantly elevated in sucrose-fed rats only. Surprisingly, plasma glucagon concentrations were elevated in i.p. and s.c. rats and were not suppressed in sucrose-fed rats. Inverse relationships were found between the plasma levels of insulin and glucose (n = 65; r = -0.42, p less than 0.0001) and between glucose and glucagon (n = 73; r = -0.46, p less than 0.0001). However, unexpectedly, a positive correlation between insulin and glucagon (n = 65; r = 0.47, p less than 0.0001) was established. As suppression of plasma glucagon levels below basal was not observed in any of the hyperinsulinemic or hyperglycemic rats, we wished to establish further whether pancreatic glucagon release could be suppressed below basal levels in the rat by another means. Thus, high doses of somatostatin (50-100 micrograms.kg-1.min-1) were infused for 45 min into normal rats without or with a concomitant hyperinsulinemic, hyperglycemic glucose clamp. Somatostatin fully suppressed insulin, but although plasma glucagon levels were decreased by somatostatin infusion relative to saline-infused animals, there was still no suppression below basal levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The aim of this study was to test the hypothesis that antecedent short-term administration of estradiol or progesterone into the central nervous system (CNS) reduces levels of neuroendocrine counterregulatory hormones during subsequent hypoglycemia. Conscious unrestrained male Sprague-Dawley rats were studied during randomized 2-day experiments. Day 1 consisted of an 8-h lateral ventricle infusion of estradiol (1 mug/mul; n = 9), progesterone (1 mug/mul; n = 9), or saline (0.2 mul/min; n = 10). On day 2, a 2-h hyperinsulinemic (30 pmol.kg(-1).min(-1)) hypoglycemic (2.9 +/- 0.2 mM) clamp was performed on all rats. Central administration of estradiol on day 1 resulted in significantly lower plasma epinephrine levels during hypoglycemia compared with saline, whereas central administration of progesterone resulted in increased levels of plasma norepinephrine and decreased levels of corticosterone both at baseline and during hypoglycemia. Glucagon responses during hypoglycemia were unaffected by prior administration of estradiol or progesterone. Endogenous glucose production following day 1 estradiol was significantly lower during day 2 hypoglycemia, and consequently, the glucose infusion rate to maintain the glycemia was significantly greater after estradiol administration compared with saline. These data suggest that 1) CNS administration of both female reproductive hormones can have rapid effects in modulating levels of counterregulatory hormones during subsequent hypoglycemia in conscious male rats, 2) forebrain administration of reproductive hormones can significantly reduce pituitary adrenal and sympathetic nervous system drive during hypoglycemia, 3) reproductive steroid hormones produce differential effects on sympathetic nervous system activity during hypoglycemia, and 4) reduction of epinephrine resulted in significantly blunted metabolic counterregulatory responses during hypoglycemia.  相似文献   

15.
The aim of this study was to determine whether activation of central type II glucocorticoid receptors can blunt autonomic nervous system counterregulatory responses to subsequent hypoglycemia. Sixty conscious unrestrained Sprague-Dawley rats were studied during 2-day experiments. Day 1 consisted of either two episodes of clamped 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) hypoglycemia (2.8 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia (6.2 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia plus simultaneous lateral cerebroventricular infusion of saline (24 microl/h; n = 8), or hyperinsulinemic euglycemia plus either lateral cerebral ventricular infusion (n = 8; LV-DEX group), fourth cerebral ventricular (n = 10; 4V-DEX group), or peripheral (n = 10; P-DEX group) infusion of dexamethasone (5 microg/h), a specific type II glucocorticoid receptor analog. For all groups, day 2 consisted of a 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) or hypoglycemic (2.9 +/- 0.2 mM) clamp. The hypoglycemic group had blunted epinephrine, glucagon, and endogenous glucose production in response to subsequent hypoglycemia. Consequently, the glucose infusion rate to maintain the glucose levels was significantly greater in this group vs. all other groups. The LV-DEX group did not have blunted counterregulatory responses to subsequent hypoglycemia, but the P-DEX and 4V-DEX groups had significantly lower epinephrine and norepinephrine responses to hypoglycemia compared with all other groups. In summary, peripheral and fourth cerebral ventricular but not lateral cerebral ventricular infusion of dexamethasone led to significant blunting of autonomic counterregulatory responses to subsequent hypoglycemia. These data suggest that prior activation of type II glucocorticoid receptors within the hindbrain plays a major role in blunting autonomic nervous system counterregulatory responses to subsequent hypoglycemia in the conscious rat.  相似文献   

16.
Hyperinsulinemic hypoglycemia is a recently described complication of Roux‐en‐Y gastric bypass (RYGB). We hypothesized that glucagon administration would help maintain normal postprandial plasma glucose concentrations by stimulating hepatic glucose output, and if so, represent a new therapeutic option for postbypass hypoglycemia. In this study, we compared the insulin and glycemic response to a mixed meal with and without concomitant glucagon infusion in a patient with severe recurrent hypoglycemia after RYGB. Although effective in transiently raising postprandial plasma glucose values, glucagon infusion was also associated with higher insulin concentrations, and failed to prevent symptomatic hypoglycemia. This case demonstrates that glucagon may have limited clinical utility in the treatment of post‐RYGB hyperinsulinemic hypoglycemia.  相似文献   

17.
The responses of epinephrine, norepinephrine and other counter-regulatory hormones to insulin-induced hypoglycemia were investigated in 5 diabetics who showed signs of autonomic neuropathy, in 7 age-matched diabetics without autonomic neuropathy and in 7 healthy subjects. The presence of autonomic neuropathy was evaluated by decreased beat-to-beat variation in heat rates during hyperventilation or orthostatic hypotension. Catecholamines were determined by a totally automated plasma catecholamine analyzing system using a two-column system of high performance liquid chromatography. Plasma epinephrine and norepinephrine responses to hypoglycemia in diabetics with autonomic neuropathy were significantly lower than those in diabetics without autonomic neuropathy. Plasma glucagon response in diabetics was apparently attenuated compared to normal controls and there was no significant difference in glucagon response between the two patient groups. Other counter-regulatory hormone responses did not differ among the three groups. The data demonstrate that the responses of plasma epinephrine and norepinephrine to insulin-induced hypoglycemia are impaired in diabetics with autonomic neuropathy.  相似文献   

18.
OBJECTIVES: The aim of this study was to examine hormonal counterregulation during insulin-induced hypoglycemia in type-1 diabetic patients during long-term near normoglycemic insulin therapy and intensive clinical care. METHODS: Type-1 diabetic patients (age 35.3 +/- 2 years, body mass index 22.8 +/- 1 kg x m(-2), mean diabetes duration 13.6 (11-17 years), mean HbA1c during the last year 6.6 +/- 0.1%) and nondiabetic subjects were studied during (0-120 min) and after (120-240 min) hypoglycemic (3.05 mmol/l) hyperinsulinemic (approximately 330 pmol/l) clamp tests. RESULTS: During hypoglycemia peak plasma concentrations of glucagon (199 +/- 16 vs. 155 +/- 11 ng/l, p < 0.05), epinephrine (4,514 +/- 644 vs. 1,676 +/- 513 pmol/l, p < 0.001), norepinephrine (2.21 +/- 0.14 vs. 1.35 +/- 0.19 nmol/l, p < 0.01) and cortisol (532 +/- 44 vs. 334 +/- 61 nmol/l) were reduced in the diabetic patients. Plasma lactate did not change from baseline values (0.51 +/- 0.06 mmol/l) in diabetic but doubled in healthy subjects (1.13 +/- 0.111 mmol/l, p < 0.001 vs. control). During the posthypoglycemic recovery period plasma concentrations of free fatty acids were higher in diabetic patients at 240 min (1.34 +/- 0.12 vs. 2.01 +/- 0.23 mmol/l, p < 0.05). CONCLUSION: Despite long-term near physiologic insulin substitution and the low incidence of hypoglycemia, hormonal hypoglycemia counterregulation was impaired in type-1 diabetic patients after a diabetes duration of more than 10 years.  相似文献   

19.
T Karashima  A V Schally 《Peptides》1988,9(3):561-565
The action of the new analog of somatostatin, D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), on plasma glucagon and glucose levels was evaluated in streptozotocin-diabetic rats. The effect of this analog on the insulin-induced hypoglycemia in diabetic rats was also investigated in order to evaluate the risk of exacerbating hypoglycemia. Administration of analog RC-160, in a dose of 25 micrograms/kg b. wt. SC, inhibited plasma glucagon secretion and decreased plasma glucose levels. This effect also occurred when plasma glucagon and glucose levels were first elevated by arginine infusion, 1000 mg/kg/hr for 30 min. Subcutaneous injection of regular insulin, 15 U/kg b. wt., produced hypoglycemia with a progressive increase in glucagon levels. Analog RC-160 completely suppressed the hypoglycemia-induced glucagon release for up to 150 min after injection of the analog or insulin. A greater decrease in the plasma glucose level was observed in the group treated with insulin and the analog than in the group injected only with insulin. These results indicate that somatostatin analog RC-160 can produce a marked and prolonged inhibition of glucagon release and a decrease in the plasma glucose level in diabetic rats. This analog may be useful as an adjunct to insulin in the treatment of diabetic patients, although caution should be exercised, to prevent hypoglycemia when using somatostatin analogs together with insulin.  相似文献   

20.
Adrenergic effects on plasma levels of glucagon, insulin, glucose and free fatty acids were studied in fasted rabbits by infusing epinephrine, norepinephrine, isoproterenol, phentolamine (an adrenergic alpha-receptor blocking drug) and propranolol (an adrenergic beta-receptor blocking drug). The adrenergic effects on the plasma levels of insulin, glucose and free fatty acids were similar to those found in other species. The plasma levels of insulin were increased by beta-receptor stimulation (isoproterenol, phentolamine + epinephrine) and decreased by alpha-receptor stimulation (epinephrine, norepinephrine, propranolol + epinephrine). The plasma levels of glucose were increased by both alpha- and beta-receptor stimulation, and the epinephrine-induced hyperglycaemia was only blocked by combined infusions with phentolamine and propranolol. The plasma levels of free fatty acids were increased by saline and further increased by beta-receptor stimulation (isoproterenol), while epinephrine and norepinephrine gave variable results. Alpha-receptor stimulation (propranolol + epinephrine) slightly decreased the plasma levels of free fatty acids. The plasma levels of glucagon, however, were mainly increased by alpha-receptor stimulation (epinephrine, norepinephrine, propranolol + epinephrine) and increased only to a minor extent by beta-receptor stimulation (isoproterenol, phentolamine + epinephrine) in rabbits. This is in contrast to results reported for humans, where beta-receptor stimulation seems to be most important in stimulating glucagon release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号