首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Widespread application of somatic cell cloning has been hampered by biological and technical problems, which include complicated and time-consuming procedures requiring skilled labor. Recently, zona-free techniques have been published with limited or no requirement for micromanipulators. The purpose of the present work was to optimize certain steps of the micromanipulator-free (i.e., handmade) procedure, to analyze the morphology of the developing blastocysts, and to explain factors involved in the high efficiencies observed. Optimization of the procedure included selection of the appropriate medium for enucleation, orientation of pairs at fusion, timing of fusion, and culture conditions. As a result of these improved steps, in vitro efficiency as measured by blastocysts per reconstructed embryo and blastocysts per working hour was among the highest described so far. The cattle serum used in our experiments was superior to other protein sources for in vitro embryo development. One possible explanation of this effect is the considerable mitogenic activity of the cattle serum compared with that of commercially available fetal calf serum. Morphological analysis of blastocysts by inverted microscopy, inner cell mass-trophoblast differential staining, and transmission electron microscopy revealed high average quality. A high initial pregnancy rate was achieved after the transfer of single blastocysts derived by aggregation of two nuclear transfer embryos into recipients. The improved handmade somatic cell nuclear transfer method may become a useful technology as a simple, inexpensive, and efficient alternative to traditional somatic cell nuclear transfer.  相似文献   

4.
5.
6.
7.
The study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.  相似文献   

8.
Forward genetics and map-based cloning approaches   总被引:16,自引:0,他引:16  
Whereas reverse genetics strategies seek to identify and select mutations in a known sequence, forward genetics requires the cloning of sequences underlying a particular mutant phenotype. Map-based cloning is tedious, hampering the quick identification of candidate genes. With the unprecedented progress in the sequencing of whole genomes, and perhaps even more with the development of saturating marker technologies, map-based cloning can now be performed so efficiently that, at least for some plant model systems, it has become feasible to identify some candidate genes within a few months. This, in turn, will boost the use of forward genetics approaches, as applied (for example) to isolating genes involved in natural variation and genes causing phenotypic mutations as derived from (second-site) mutagenesis screens.  相似文献   

9.
Novel approaches to map protein interactions   总被引:4,自引:0,他引:4  
Although we now have the sequence of the human genome at hand, we face the challenge of assigning function to the identified genes. Genes usually ascribe their function through proteins, and the role of proteins is to interact with other molecules. Therefore, if we could map the interactions of proteins we would be able to understand protein function. The challenge of mapping protein interactions is vast and many novel approaches have recently been developed for this task using molecular biology, mass spectrometry and chemiproteomic techniques.  相似文献   

10.
An efficient and cheap energization of microbial biocatalysts is essential in current biotechnological processes. A promising alternative to the use of common organic or inorganic electron donors is the semiconductor nanoparticles (SNs) that absorb light and transfer electrons (photoelectrons) behaving as artificial photosynthetic systems (biohybrid systems). Excited photoelectrons generated by illuminated SNs are highly reductive and readily accepted by membrane-bound proteins and electron shuttles to drive specific cell reduction processes and energy generation in microbes. However, the operational mechanisms of these hybrid systems are still poorly understood, especially at the material–microbe interface, and therefore the design and production of efficient biohybrids are challenging. Some major limitations/challenges and future prospects of SNs as microbial energization systems are discussed.  相似文献   

11.
The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo sexing and in vitro fertilization. While it will not replace any of the above mentioned, its degree of utilization will depend on both improvement in efficiency as well as social and regulatory acceptance.  相似文献   

12.
Nuclear cloning is still a developing technique used to create genetically identical animals by somatic cell nuclear transfer into unfertilized eggs. Despite an intensive effort in a number of laboratories, the success rate of obtaining viable offspring from this technique remains less than 5%. In the past few years many investigators reported the reprogramming of specific nuclear activities in cloned animals, such as genome-wide gene expression patterns, DNA methylation, genetic imprinting, histone modifications and telomere length regulation. The results highlight the tremendous difficulty the clones face to reprogram the original differentiation status of the donor nuclei. Nevertheless, nuclei prepared from terminally differentiated lymphocytes can overcome this barrier and produce apparently normal mice. Study of this striking nuclear reprogramming activity should significantly contribute to our understanding of cell differentiation in more physiological settings.  相似文献   

13.
14.
The history of somatic cell nuclear transfer (NT) in mammals is full of exciting experiments and findings regarding the technique and outcome of NT, despite only covering a period of 6 years. The production of Dolly, for the first time demonstrating cloning from an adult somatic cell, had a great impact on subsequent studies. However, the more progress we make, the more obvious it becomes how little we know about the processes during NT, specifically how reprogramming events occur. Therefore, it is certainly challenging to continue investigating every step of somatic cell NT more intensively, starting from the donor cell, (type, cell cycle, synchronization, population doublings) and continuing until the cloned offspring are born and even further, to see how and if NT has an influence on health, viability, quantitative traits, and reproduction of cloned individuals.  相似文献   

15.
Studies of molecular recognition using designed and synthesised molecules provide valuable information on the principle and possible applications of artificial functional molecules. Porphyrin-based receptors have been used to elucidate haem-protein interactions and the basic mechanism of multi-point recognition.  相似文献   

16.
Fatal bovine respiratory disease (BRD) is a major cause of financial losses in the cattle industry. A variety of stressors have been implicated as contributing to disease severity. However, it has proven difficult to determine the role these individual factors may play in the final outcome of this disease complex. The objective of the present investigation was to obtain proteomic, metabonomic, and elemental profiles of bovine serum samples from stressed and control animals before and after a primary viral infection to determine if these profiles could distinguish between responses to stressors and viral infection. Multivariate analysis revealed distinct differential trends in the distribution profile of proteins, metabolites, and elements following a stress response both before and after primary viral infection. A group of acute phase proteins, metabolites, and elements could be specifically linked to either a stress response (decreased serum amyloid A and Cu, increased apolipoprotein CIII, amino acids, LDL, P, and Mo) or a primary viral respiratory infection (increased apolipoprotein A1, haptoglobin, glucose, amino acids, LDL and Cu, decreased Lipid, and P). Thus, combined OMICS analysis of serum samples revealed that multimethod analysis could be used to discriminate between the complex biological responses to stress and viral infection.  相似文献   

17.
Novel approaches to the biosynthesis of vanillin   总被引:7,自引:0,他引:7  
Microorganisms able to produce vanillin in excess of 6g/l from ferulic acid have now been isolated. In Pseudomonas strains, the metabolic pathway from eugenol via ferulic acid to vanillin has been characterised at the enzymic and molecular genetic levels. Attempts to introduce vanillin production into other organisms by genetic engineering have begun.  相似文献   

18.
Luo  Chan  Wang  Zhiqiang  Wang  Jinling  Yun  Feng  Lu  Fenghua  Fu  Jiayuan  Liu  Qingyou  Shi  Deshun 《中国科学:生命科学英文版》2022,65(10):2076-2092
Science China Life Sciences - Mammalian individuals differ in their somatic cell cloning efficiency, but the mechanisms leading to this variation is poorly understood. Here we found that high...  相似文献   

19.
Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.  相似文献   

20.
Riaz A  Zhao X  Dai X  Li W  Liu L  Wan H  Yu Y  Wang L  Zhou Q 《Cell research》2011,21(5):770-778
Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号