首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high temperature dielectric relaxations of purified and elastolized ligamentum nuchae elastin in the dry state have been investigated by thermally stimulated depolarization current spectrometry, with an equivalent frequency comprised between 10(-2) and 10(-3) Hz. A main relaxation mode, located close to 150 degrees C and attributed to the dielectric manifestation of a glass transition, is found for all samples. After decomposition by the fractional polarization method, the analysis of the high temperature mode shows the existence of two relaxation mechanisms: a cooperative one, associated with flexible zones of the protein, and an isoenthalpic one, corresponding to more ordered and constrained zones. The activation parameters of the two mechanisms are dependent on the extent of elastolysis and on the nature of enzyme (pancreatic elastase vs leukocyte elastase). Both enzymes influence the dielectric behavior of elastin in a similar way: the activation enthalpy maximum of the relaxing units located in the flexible zones, characteristic of the cooperative length, decreases with increasing hydrolysis. Moreover, the isoenthalpic mechanism becomes cooperative at the highest extent of elastolysis, which highlights release of constraints in ordered zones. Nevertheless, the differences found between the two enzymatic hydrolyses are characteristic of distinct sites of cleavage in the elastin network.  相似文献   

2.
Purified and hydrated elastin is studied by both thermal and dielectric techniques to have insight into the chain dynamics of this protein. By differential scanning calorimetry, the glassy behavior of elastin is highlighted; the glass transition temperature (T(g)) of elastin is found to be widely dependent on hydration, falling from 200 degrees C in the dehydrated state to 30 degrees C for 30% hydration. A limit of T(g) at around 0 degrees C is found when crystallizable water is present in the system, that is, when the formation of ice prevents motions of some 10 nm along the polypeptidic chains. The technique of thermally stimulated currents, carried out in the -180 to 0 degrees C temperature range, is useful to detect localized motions. In this case, too, the localized motions vary considerably according to hydration: a first relaxation mode is observed at -145 degrees C and it is associated with the reorientation of crystallizable water in ice I; a second relaxation mode, more complex and cooperative, occurs at around -80 degrees C and could be attributed to the complex constituted by the dipolar groups of the polypeptidic chain and noncrystallizable water, behaving as a glassy system.  相似文献   

3.
The dielectric behaviour of aqueous solutions of glucose, poly(ethylene glycol)s (PEGs) 200 and 600, and poly(vinyl pyrrolidone) (PVP) has been examined at different concentrations in the frequency range of 10(6)-10(-3) Hz by dielectric spectroscopy and by using differential scanning calorimetry down to 77 K from room temperature. The shape of the relaxation spectra and the temperature dependence of the relaxation rates have been critically examined along with temperature dependence of dielectric strength. In addition to the so-called primary (alpha-) relaxation process, which is responsible for the glass-transition event at T(g), another relaxation process of comparable magnitude has been found to bifurcate from the main relaxation process on the water-rich side, which continues to the sub-T(g) region, exhibiting relaxation at low frequencies. The sub-T(g) process dominates the dielectric measurements in aqueous solutions of higher PEGs, and the main relaxation process is seen as a weak process. The sub-T(g) process was not observed when water was replaced by methanol in the binary mixtures. These observations suggest that the sub-T(g) process in the aqueous mixtures is due to the reorientational motion of the 'confined' water molecules. The corresponding dielectric strength shows a noticeable change at T(g), indicating a hindered rotation of water molecules in the glassy phase. The nature of this confined water appears to be anomalous compared to most other supercooled confined liquids.  相似文献   

4.
Carbon-13 NMR longitudinal relaxation time and line-width studies are reported on the coacervate concentration (about 60% water by weight) of singly carbonyl carbon enriched polypentapeptides of elastin: specifically, (L-Val1-L-[1-13C]Pro2-Gly3-L-Val4-Gly5)n and (L-Val1-L-Pro2-Gly3-L-Val4-[1-13C]Gly5)n. On raising the temperature from 10 to 25 degrees C and from 40 to 70 degrees C, carbonyl mobility increases, but over the temperature interval from 25 to 40 degrees C, the mobility decreases. The results characterize an inverse temperature transition in the most fundamental sense of temperature being a measure of molecular motion. This transition in the state of the polypentapeptide indicates an increase in order of polypeptide on raising the temperature from 25 degrees C to physiological temperature. This fundamental NMR characterization corresponds with the results of numerous other physical methods, e.g., circular dichroism, dielectric relaxation, and electron microscopy, that correspondingly indicate an increase in order of the polypentapeptide both intramolecularly and intermolecularly for the same temperature increase from 25 to 40 degrees C. Significantly with respect to elastomeric function, thermoelasticity studies on gamma-irradiation cross-linked polypentapeptide coacervate show a dramatic increase in elastomeric force over the same interval that is here characterized by NMR as an inverse temperature transition. The temperature dependence of mobility above 40 degrees C indicates an activation energy of the order of 1.2 kcal/mol, which is the magnitude of barrier expected for elasticity.  相似文献   

5.
An improved method for extraction and purification of soluble elastin from aortas of copper-deficient swine has been devised. It depends upon the use of both acidic and neutral protease inhibitors during preparation. Collagen is first precipitated with acetic acid. A two-step separation and purification of elastin from the collagen-free extract is based on absorption of the acidic proteins on DEAE-cellulose and gel filtration through agarose. The protein recovered is homogeneous by gel electrophoresis. It has the molecular weight (75,000) and amino acid composition of the soluble elastin from the same source prepared by repeated coacervation.  相似文献   

6.
Dynamics of uncrystallized water and protein was studied in hydrated pellets of the fibrous protein elastin in a wide hydration range (0 to 23 wt.%), by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption–desorption measurements (ESI) were performed at room temperature. The glass transition of the system was studied by DSC and its complex dependence on hydration water was verified. A critical water fraction of about 18 wt.% was found, associated with a reorganization of water in the material. Three dielectric relaxations, associated to dynamics related to distinct uncrystallized water populations, were recorded by TSDC and DRS. The low temperature secondary relaxation of hydrophilic polar groups on the protein surface triggered by hydration water for almost dry samples contains contributions from water molecules themselves at higher water fractions (ν relaxation). This particular relaxation is attributed to water molecules in the primary and secondary hydration shells of the protein fibers. At higher temperatures and for water fraction values equal to or higher than 10 wt.%, a local relaxation of water molecules condensed within small openings in the interior of the protein fibers was recorded. The evolution of this relaxation (w relaxation) with hydration level results in enhanced cooperativity at high water fraction values, implying the existence of “internal” water confined within the protein structure. At higher temperatures a relaxation associated with water dynamics within clusters between fibers (p relaxation) was also recorded, in the same hydration range.  相似文献   

7.
The dielectric properties of suspensions of intact cells of Methylophilus methylotrophus, Paracoccus denitrificans and Bacillus subtilis have been measured in the frequency range 1 kHz to 13 MHz. All possess a pronounced dispersion corresponding in magnitude and relaxation time to the "beta-dispersion" in a terminology defined by Schwan [Adv. Biol. Med. Phys. 5:147-209 (1957)]. The latter two strains, but not M. methylotrophus, also possess a substantial alpha-dispersion. The relaxation time of the beta-dispersion of B. subtilis is significantly lower than that of the other two strains, due to the higher internal K+ content of this Gram-positive organism. Treatment of P. denitrificans or B. subtilis with lysozyme greatly reduces the magnitude of the alpha-dispersion; in the latter case it is virtually abolished. The magnitude of both the alpha- and beta-dispersions of protoplasts of these organisms is significantly decreased by treatment with the cross-linking reagent glutaraldehyde, indicating that diffusional motions of the lipids and/or proteins in the protoplast membranes contribute to the dielectric relaxations observed in this frequency range. Such motions cannot be unrestricted, as in the "fluid mosaic" model, since the relaxation times of the lipids and proteins, if restricted by hydrodynamic forces alone, should then correspond, in protoplasts of this radius (0.4-0.5 micron), to approximately 10 Hz. Even after treatment of the (spherical) protoplasts with glutaraldehyde, the breadth of the remaining beta-dispersion is still significantly greater than (a) that of a pure Debye dispersion and (b) that to be expected solely from a classical Maxwell-Wagner-type mechanism. It is recognised that the surfaces of the protein complexes in such membranes extend significantly beyond the membrane surface as delineated by the phospholipid head-groups; such molecular granularity can in principle account for the broadened dielectric relaxations in the frequency range above 1 kHz, in terms of the impediment to genuinely tangential counterion relaxation caused by the protruding proteins themselves. The relaxation time of a previously observed, novel, low-frequency, glutaraldehyde-sensitive (mu-) dispersion in bacterial chromatophore suspensions, as well as that of their alpha-dispersion, is significantly increased by increasing the aqueous viscosity with glycerol. This finding is consistent with the view that, from a dielectric standpoint, the motions of charged proteins (and lipids) in biological membranes are rather tightly coupled to those of the adjacent ions and dipoles in the electric double layer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Elastin synthesis during perinatal lung development in the rat   总被引:2,自引:0,他引:2  
The rate of soluble elastin synthesis was estimated in lung explants from rats of differing ages to better define periods in lung development important to the deposition of lung elastin. Lungs from rat pups at days 1, 3, 7, 9, 12, 15, and 21 post-parturition and from adult rats were incubated in a defined medium containing L-[3H]valine. Following incubation, labelled soluble elastin (tropoelastin) was separated from other soluble proteins by coacervation and electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate. The tropoelastin synthetic rate was then estimated after correcting for differences in recovery of radioactivity as tropoelastin and lung tissue L-[3H]valine specific activity. Maximal rates of elastin synthesis were observed in lung explants from 7-12-day-old rats. The rate of elastin synthesis during this period was 5-8-times the rate observed in adult rat lung (expressed per g of fresh lung) and represented approx. 2% of the total protein synthesis. Moreover, the values derived from lung explant culture for elastin synthesis were consistent with values for lung elastin deposition in the perinatal rat (5-10 micrograms elastin/h per g lung).  相似文献   

9.
The ability of Staphylococcus aureus to adhere to components of the extracellular matrix is an important mechanism for colonization of host tissues during infection. We have previously shown that S. aureus binds elastin, a major component of the extracellular matrix. The integral membrane protein, elastin-binding protein (EbpS), binds soluble elastin peptides and tropoelastin via its surface-exposed N-terminal domain. In this study, we demonstrate that some strains of S. aureus adhere strongly to immobilized human elastin and that this interaction is independent of EbpS but instead is mediated by the fibronectin-binding proteins, FnBPA and FnBPB. Our results show that EbpS mutant cells adhere to elastin-coated plates, whereas the cells negative for FnBPA and FnBPB do not adhere to the plates. Furthermore, only wild-type cells from the exponential phase of growth adhered when FnBPs were expressed maximally. We show that adherence to elastin promoted by FnBPA was not affected by soluble fibronectin, suggesting that the elastin binding domain is distinct from the fibronectin binding regions. Recombinant FnBPA(37-544) (rFnBPA(37-544)) protein corresponding to the A region of FnBPA and anti-FnBPA(37-544) antibodies inhibited FnBPA-mediated bacterial adherence to immobilized elastin. Finally, recombinant A domain proteins, rFnBPA(37-544) and rFnBPB(37-540), bound immobilized elastin dose-dependently and saturably. This interaction was inhibited by soluble elastin peptides, suggesting a specific receptor-ligand interaction.  相似文献   

10.
The dielectric relaxation behaviour of several amorphous low molecular weight carbohydrates and their 10% w/w water mixtures has been studied in the supercooled liquid and glassy regions in the frequency range 100 Hz to 100 kHz. The dry carbohydrates show a primary alpha-relaxation (activation energy 250-405 kJ mol(-1)) at temperatures above the calorimetric glass transition temperature, Tg, and, in most cases, a secondary beta-relaxation (activation energy 42-55 kJ mol(-1)) at sub-Tg temperatures. Whilst D-mannose showed a beta-relaxation similar in strength to D-glucose, its deoxy sugar, L-rhamnose showed a relatively weak beta-relaxation. This indicates that the hydroxymethyl group influences relaxation in carbohydrate glasses. Addition of water shifted the alpha-relaxations to lower temperatures and increased the strength of the beta-relaxations. In glucitol this resulted in a merging of the alpha- and beta-relaxations. The beta-relaxation increased in strength and decreased in temperature for the series of water mixtures: D-glucose, maltose, and maltotriose.  相似文献   

11.
12.
Dextran, pullulan and amylose have been investigated by differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical and dielectric spectroscopy over a wide range of temperatures and frequencies. No melting or glass transition is seen below the range of thermal degradation (about 300 degrees C) for either amylose or pullulan; only dextran shows a Tg at 223 degrees C (delta cp = 0.40 J/g deg). The viscoelastic spectrum of the 'dry' polysaccharides is characterized by a low temperature relaxation that occurs at -94, -73 and -59 degrees C, at 1 kHz, (activation energy 32, 39 and 52 kJ/mol) in dextran, pullulan and amylose respectively and is assigned to small entity local motions of the polysaccharide backbone. Absorbed water strongly modifies the relaxation spectrum, inducing a new relaxation below room temperature and dissipation regions associated with water loss above room temperature. The former appears at temperatures higher than the relaxation characteristic of the dry polymer and moves to lower temperature with increasing water content. In normal 'room humidity' conditions (about 10% absorbed water) the water-induced relaxation, attributed to the motion of complex polymer-water relaxing units, is the only observable feature in the dynamic mechanical and dielectric spectrum below room temperature.  相似文献   

13.
Direct evidence showing that a soluble form of elastin is the precursor of cross-linked elastin was obtained from pulse-chase experiments using chick embryo aortas and by demonstrating the conversion of soluble elastin into cross-linked elastin in a cell-free system. Acetic acid extracts of embryonic chick aorta pulse-labeled with [14C]lysine contain two radioactive proteins of molecular weights 74,000 and 138,000 which have been identified previously as soluble elastin and the pro-alpha chain of collagen, respectively. In pulse-chase experiments, the radioactivity incorporated in the soluble elastin during the pulse with [14C]lysine disappeared during a 24-hour chase with [12C]lysine and 89% of that which disappeared was accounted for in the desmosines of alkali-insoluble elastin. The disappearance of the radioactivity from the soluble fraction and its appearance in the desmosines of elastin were inhibited by beta-aminopropionitrile, a specific inhibitor of the cross-linking enzyme lysyl oxidase. In addition in vitro experiments, it was shown that the radioactivity in the desmosines of elastin can arise from that present in an acid-soluble precursor protein. This precursor protein is soluble elastin, as demonstrated by the formation of desmosines when a homogeneous preparation of soluble elastin was incubated with purified lysyl oxidase.  相似文献   

14.
G E Ellis  K J Packer 《Biopolymers》1976,15(5):813-832
The nuclear magnetic spin-lattice and transverse relaxation processes for the 1H and 2D nuclei in purified elastin (ligamentum nuchae), exchanged and hydrated with excess D2O, have been studied in the temperature range 276°–340°K. The 2D relaxation results clearly show the presence of D2O (1) external to the bulk elastin sample, (2) in spaces within the bulk elastin, and (3) as an integral part of the protein on a molecular level. It is shown from these measurements that the protein on a molecular level. It is shown from these measurements that the water content of the protein itself changes from ~0.8 g D2O/g dry elastin at ~280°K to ~0.2 g D2O/g dry elastin at ~335°K, a decrease of 400%. The D2O content of the interfiber spaces decreases by less than 20% over the same temperature range. This fact throws considerable doubt on the validity of the values of β, the thermal expansion coefficient of elastin, used by other workers in discussion of the elastic mechanism in elastin. The elastin proton transverse relaxation shows the presence of three regions in elastin having different degrees of molecular mobility. These are assigned to protons associated with the crosslinks, a fairly mobile, hydrophobic, and low-water-content region, and a more mobile higher water-content region. The temperature variation of the relative proportions of these three regions is explained in terms of a hypothetical temperature-composition phase diagram in which the two mobile regions are represented as two partially miscible phases with different negative temperature coefficients of ‘solubility’ in water. The implications of these observations for current views of the nature of elastin are assessed. It is concluded that the spin-relaxation results are consistent with a multiphase structural model for elastin. An approximate sorption isotherm for the water/elastin system is reported and shows the relatively weak nature of the water/elastin interaction.  相似文献   

15.
Using broadband dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and another sub-Tg process called γ-process, in the supercooled state of d-lyxose, over a wide frequency (10-2–) and temperature range (120–340 K). In addition, the same sample was analyzed by differential scanning calorimeter. The temperature dependence of the relaxation times as well as the dielectric strength of different processes has been critically examined. It has been observed that the slower secondary relaxation (designated as β-) process shifts to lower frequencies with increasing applied pressure, but not the faster one. This pressure dependence indicates that the observed slower secondary relaxation (β-) is Johari–Goldstein relaxation process and faster one (γ-process) is probably the rotation of hydroxymethyl (–CH2OH) side group attached to the sugar ring, that is, of intramolecular origin.  相似文献   

16.
Soluble elastin, prepared from insoluble elastin by treatment with oxalic acid or elastase, was found to inhibit the formation of thromboxane B2 both from [1-14C]arachidonic acid added to washed platelets and from [1-14C]arachidonic acid in prelabeled platelets on stimulation with thrombin. In both systems, the formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was accelerated. Oxalic acid-treated soluble elastin st 1 and 10 mg/ml inhibited the formation of thromboxane B2 from exogenously supplied arachidonic acid 21 and 59%, respectively, and the formation of thromboxane B2 in prelabeled platelets stimulated by thrombin 44 and 94%, respectively. These concentrations of elastin increased the formation of 12-HETE from exogenously supplied arachidonic acid about 3.4- and 7.3-times, respectively. Almost all the added arachidonic acid was converted to metabolites. In prelabeled platelets, soluble elastin at 1 and 10 mg/ml increased the formation of 12-HETE stimulated by thrombin about 1.3- and 2.8-times, respectively, and inhibited the thrombin-induced total productions of thromboxane B2 (12-hydroxy-5,8,10-heptadecatrienoic acid (12-HETE) and free arachidonic acid by 26 and 25%, respectively. Elastase-treated digested elastin also inhibited the formation of thromboxane B2 and stimulated the formation of 12-HETE in prelabeled platelets stimulated by thrombin. This inhibitory action of elastin was not replaced by desmosine. The level of cAMP in platelets was not affected by soluble elastin. Soluble elastin was also found to inhibit platelet aggregation induced by thrombin. However, the inhibitory action of soluble elastin on platelet aggregation cannot be explained by inhibition of thromboxane B2 formation by the elastin.  相似文献   

17.
During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension.  相似文献   

18.
Abstract

We report both experimental and molecular simulation studies of the melting behavior of aniline confined within an activated carbon fiber having slit-shaped pores. Dielectric relaxation spectroscopy is used to determine the transition temperatures and also the dielectric relaxation times over the temperature range 240 to 340 K. For the confined system two transitions were observed, one at 298 K and a second transition at 324 K. The measured relaxation times indicate that the low temperature phase (below 298 K) is a crystalline or partially crystalline solid phase, while that above 324 K is a liquid-like phase; for the intermediate phase, in the range 298–324 K, the relaxation times are of the order 10?5s, which is typical of a hexatic phase. The melting temperature of the confined system is well above that of bulk aniline, which is 267 K. The simulations are carried out using the Grand Canonical Monte Carlo method together with Landau free energy calculations, and phase transitions are located as state points where the grand free energies of two confined phases are equal. The nature of these phases is determined by analysis of in-plane pair positional and orientational correlation functions. The simulations also show two transitions. The first is a transition from a two-dimensional hexagonal crystal phase to a hexatic phase at 296 K; the second transition is from the hexatic to a liquid-like phase at 336 K. Confinement within the slit-shaped pores appears to stabilize the hexatic phase, which is the stable phase over a wider temperature range than for quasi-two-dimensional thin films.  相似文献   

19.
Isothermal dielectric loss spectra of neutralized and nonneutralized chitosan were acquired in successive runs from -130 degrees C up to increasing final temperatures, in a frequency range between 20 Hz and 1 MHz. Essentially, three relaxation processes were detected in the temperature range covered: (i) a beta-wet process, detected when the sample has a higher water content that vanishes after heating to 150 degrees C; (ii) a beta process, which is located at temperatures below 0 degrees C, becoming better defined and maintaining its location after annealing at 150 degrees C independently of the protonation state of the amino side group; and (iii) a sigma process that deviates to higher temperatures with drying, being more mobile in the nonneutralized form. Moreover, in dried neutralized chitosan, a fourth process was detected in the low frequency side of the secondary beta process that diminishes after annealing. Whether this process is a distinct relaxation of the dried polymer or a deviated beta-wet process due to the loss of water residues achieved by annealing is not straightforward. Only beta and sigma processes persist after annealing at 150 degrees C. The changes in molecular mobility upon drying of these two relaxation processes were evaluated.  相似文献   

20.
When introduced into water, some molecules and ions (solutes) enforce the hydrogen-bonded network of neighboring water molecules that are thus restrained from thermal motions and are less mobile than those in the bulk phase (structure-making or positive hydration effect), and other solutes cause the opposite effect (structure-breaking or negative hydration effect). Using a method of microwave dielectric spectroscopy recently developed to measure the rotational mobility (dielectric relaxation frequency) of water hydrating proteins and the volume of hydration shells, the hydration of actin filament (F-actin) has been studied. The results indicate that F-actin exhibits both the structure-making and structure-breaking effects. Thus, apart from the water molecules with lowered rotational mobility that make up a typical hydration shell, there are other water molecules around the F-actin which have a much higher mobility than that of bulk water. No such dual hydration has been observed for myoglobin studied as the representative example of globular proteins which all showed qualitatively similar dielectric spectra. The volume fraction of the mobilized (hyper-mobile) water is roughly equal to that of the restrained water, which is two-thirds of the molecular volume of G-actin in size. The dielectric spectra of aqueous solutions of urea and potassium-halide salts have also been studied. The results suggest that urea and I(-) induce the hyper-mobile states of water, which is consistent with their well-known structure-breaking effect. The molecular surface of actin is rich in negative charges, which along with its filamentous structure provides a structural basis for the induction of a hyper-mobile state of water. A possible implication of the findings of the present study is discussed in relation to the chemomechanical energy transduction through interaction with myosin in the presence of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号