首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A stimulation of the gigantocellular tegmental field (FTG) in the medulla oblongata often increases systemic arterial blood pressure (SAP) and decreases heart rate (HR). We investigated if the cardioinhibitory/depressor areas, including the nucleus ambiguus (NA), the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), underlied the functional expression of FTG neurons in regulating cardiovascular responses. In 73 chloralose-urethane anesthetized cats, the HR, SAP and vertebral nerve activity (VNA) were recorded. Neurons in the FTG, NA, DMV and CVLM were stimulated by microinjection of sodium glutamate (25 mM Glu, 70 nl). To study if the NA, DMV, and CVLM relayed the cardioinhibitory messages from the FTG, 24 mM kainic acid (KA, 100 nl) was used as an excitotoxic agent to lesion neurons in the NA, DMV or CVLM. We found that the cardioinhibition induced by FTG stimulation was significantly reduced by KA lesioning of the ipsilateral NA or DMV. Subsequently, a bilateral KA lesion of NA or DMV abolished the cardioinhibitory responses of FTG. Compared to the consequence of KA lesion of the DMV, only a smaller bradycardia was induced by FTG stimulation after KA lesion of the NA. The pressor response induced by Glu stimulation of the FTG was reduced by the KA lesion of the CVLM. Such an effect was dominant ipsilaterally. Our findings suggested that both NA and DMV mediated the cardioinhibitory responses of FTG. The pressor message from the FTG neurons might be partly working via a disinhibitory mechanism through the depressor neurons located in the CVLM.  相似文献   

2.
The aim of the present study was to examine the relationship between the lateral tegmental field (FTL), a cardioinhibitory area, with other cardioinhibitory areas, i.e., the ambiguus nucleus (NA) and the dorsal motor nucleus of vagus (DMV) and the caudal ventrolateral medulla (CVLM), a vasopressor inhibitory area. In 55 cats anesthetized with chloralose (40 mg/kg) and urethane (400 mg/kg), the cardiovascular responses of heart rate (HR), systemic arterial blood pressure (SAP) and vertebral nerve activity (VNA) were recorded. The FTL, NA, DMV and CVLM were identified first by stimulation (rectangular pulses in 80 Hz, 0.5 ms, 50-100 microA) and then confirmed by microinjection of sodium glutamate (Glu, 0.25M, 70 nl). In studying the influence of NA, DMV, or CVLM lesion on the Gluinduced responses in FTL, kainic acid (KA, 24 mM, 100 nl) was microinjected into the NA, DMV or CVLM. FTL stimulation produced an average decrease of HR by 55%. After KA lesioning of the ipsilateral NA or the DMV, the decreased HR induced by FTL was significantly diminished. After subsequent lesion of the contralateral DMV or NA, the bradycardia of FTL was abolished. The reduction of resting HR was more intense after lesioning the NA than DMV and with the left side more than that of the right side. These studies suggest that the cardioinhibitory responses of FTL are mediated through both NA and DMV with predominance of the former, while the hypotensive effect of FTL is mediated through CVLM. The precise pathway responsible for the FTL-induced bradycardia and hypotension is to be determined.  相似文献   

3.
Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.  相似文献   

4.
Neurons in the caudal pressor area (CPA) are a source of tonic sympathoexcitation that is dependent on activation of cardiovascular sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM). In the present study, we sought to clarify the mechanism through which CPA neurons elicit increases in RVLM neuronal discharge, vasoconstrictor sympathetic tone, and arterial pressure. In urethan-chloralose-anesthetized, paralyzed, and artificially ventilated rats, bilateral disinhibition of CPA with bicuculline (Bic) after bilateral disinhibition of caudal ventrolateral medulla (CVLM) caused increases in splanchnic sympathetic nerve activity (+277% control) and arterial pressure (+54 mmHg). Inhibition of CVLM neurons with muscimol abolished the pressor response to activation of CPA neurons, suggesting that neurons within CVLM mediate the excitatory responses from CPA. Disinhibition of CVLM and CPA with Bic enhanced the sympathoexcitatory responses to stimulation of CPA with DL-homocysteic acid, which were blocked by microinjections of kynurenic acid into CVLM. We conclude that the pathway from CPA to RVLM involves an obligatory glutamatergic activation of sympathoexcitatory neurons in the vicinity of CVLM.  相似文献   

5.
The role of excitatory amino acid (EAA) receptors in the rostral ventrolateral medulla (RVLM) in maintaining resting sympathetic vasomotor tone remains unclear. It has been proposed that EAA receptors in the RVLM mediate excitatory inputs both to presympathetic neurons and to interneurons in the caudal ventrolateral medulla (CVLM), which then provide a counterbalancing inhibition of RVLM presympathetic neurons. In this study, we tested this hypothesis by determining the effect of blockade of EAA receptors in the RVLM on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), after inhibition of CVLM neurons. In anesthetized rats, bilateral injections of muscimol in the CVLM increased MAP, HR, and RSNA. Subsequent bilateral injections of kynurenic acid (Kyn, 2.7 nmol) in the RVLM caused a modest reduction of approximately 20 mmHg in the MAP but had no effect, when compared with the effect of vehicle injection alone, on HR or RSNA. By approximately 50 min after the injections of Kyn or vehicle in the RVLM, the MAP had stabilized at a level close to its original baseline level, but the HR and RSNA stabilized at levels above baseline. The results indicate that removal of tonic EAA drive to RVLM neurons has little effect on the tonic activity of RVLM presympathetic neurons, even when inputs from the CVLM are blocked. Thus the tonic activity of RVLM presympathetic neurons under these conditions is dependent on excitatory synaptic inputs mediated by non-EAA receptors and/or the autoactivity of these neurons.  相似文献   

6.
We examined the effects of serotonin (5-HT) on cardiovascular responses and blood flows in the right common carotid artery (RCCA), superior mesenteric artery (SMA) and right femoral artery (RFA), stimulated by glutamate (Glu) in the dorsomedial medulla (DM), rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM). Microinjection of Glu into the DM produced increases in systemic arterial pressure (SAP) and flows in the RCCA and RFA, and decrease in flow in the SMA. Microinjection of Glu into the RVLM produced increases in SAP and decreases in flows in the RCCA, SMA and RFA. Prior microinjections of 5-HT into the same sites attenuated all the Glu-induced responses. Microinjection of Glu into the CVLM produced decreases in SAP and flows in the RCCA, SMA and RFA. These decreases were potentiated by prior injection of 5-HT. These findings suggest that 5-HT modulates the cardiovascular and blood flow responses induced by Glu in the medulla.  相似文献   

7.
在麻醉大鼠观察了向延髓腹外侧区微量注射NO合成酶抑制剂N-硝基左旋精氨酸(LNNA)和硝普钢(SNP)对血压、心率和肾交感神经活动的影响,旨在探讨中枢左旋精氨酸-NO通路在动脉血压调节中的作用及其机制。实验结果如下:(1)向延髓腹外侧头端区(RVLM)注射L-NNA后,平均动脉压(MAP)升高,肾交感神经活动(RSNA)增强;心率(HR)减慢,但无统计学意义。MAP和RSNA的变化持续30min以上;此效应可被预先静注左旋精氨酸所逆转。(2)向RVLM微量注射SNP,MAP降低,RSNA减弱;但HR的变化无统计学意义。(3)向延髓腹外侧尾端区(CVLM)注射L-NNA,MAP降低,HR减慢,RSNA减弱。(4)向CVLM微量注射SNP,MAP升高,RSNA增强,而心率无明显变化。以上结果表明,中枢左旋精氨酸-NO通路对延髓腹外侧部的神经元活动有调变作用。  相似文献   

8.
Glutamate stimulation of the caudal midline medulla (CMM) causes profound sympathoinhibition due to GABAergic inhibition of presympathetic neurons in the rostral ventrolateral medulla (RVLM). We investigated whether the sympathoinhibitory pathway from CMM to RVLM, like the central baroreceptor reflex pathway, includes a glutamatergic synapse in the caudal ventrolateral medulla (CVLM). In pentobarbital sodium-anesthetized rats, the RVLM on one side was inhibited by a muscimol microinjection. Then the response evoked by glutamate microinjections into the CMM or by baroreceptor stimulation was determined before and after 1) microinjection of the GABA receptor antagonist bicuculline into the RVLM on the other side or 2) microinjections of the glutamate receptor antagonist kynurenate bilaterally into the CVLM. Bicuculline in the RVLM greatly reduced both CMM- and baroreceptor-evoked sympathoinhibition. Compared with the effect of vehicle solution, kynurenate in the CVLM greatly reduced baroreceptor-evoked sympathoinhibition, whereas its effect on CMM-evoked sympathoinhibition was not different from that of the vehicle solution. These findings indicate that the output pathway from CMM sympathoinhibitory neurons, unlike the baroreceptor and other reflex sympathoinhibitory pathways, does not include a glutamatergic synapse in the CVLM.  相似文献   

9.
The gastrointestinal hormone CCK inhibits a subset of presympathetic neurons in the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor outflow to the gastrointestinal circulation. We tested the hypothesis that the central neurocircuitry of this novel sympathoinhibitory reflex involves a relay in the caudal ventrolateral medullary (CVLM) depressor area. Blood pressure and greater splanchnic sympathetic nerve discharge (SSND) or lumbar sympathetic nerve discharge (LSND) were monitored in anesthetised, paralyzed male Sprague-Dawley rats. The effects of phenylephrine (PE, 10 microg/kg iv; baroreflex activation), phenylbiguanide (PBG, 10 microg/kg iv; von Bezold-Jarisch reflex) and CCK (4 or 8 microg/kg iv) on SSND or LSND, were tested before and after bilateral injection of 50-100 nl of the GABAA agonist muscimol (1.75 mM; n=6, SSND; n=7, LSND) or the excitatory amino acid antagonist kynurenate (55 mM; n=7, SSND) into the CVLM. PE and PBG elicited splanchnic and lumbar sympathoinhibitory responses that were abolished by bilateral muscimol or kynurenate injection into the CVLM. Similarly, the inhibitory effect of CCK on SSND was abolished after neuronal inhibition within the CVLM. In contrast, CCK-evoked lumbar sympathoexcitation was accentuated following bilateral CVLM inhibition. In control experiments (n=7), these agents were injected outside the CVLM and had no effect on splanchnic sympathoinhibitory responses to PE, PBG, and CCK. In conclusion, neurons in the CVLM are necessary for the splanchnic but not lumbar sympathetic vasomotor reflex response to CCK. This strengthens the view that subpopulations of RVLM neurons supply sympathetic vasomotor outflow to specific vascular territories.  相似文献   

10.
Interruption of the baroreceptor reflex by transection of afferent nerves (sinoaortic denervation; SAD) or lesions of nucleus tractus solitarius (NTS) elevates sympathetic nerve activity (SNA) and arterial pressure (AP). However, within 1 wk, mean AP returns to normal despite the absence of baroreflexes. In this study, we examine central mechanisms that control AP in chronic baroreceptor-denervated rats. In urethane-anesthetized rats (1.5 g/kg i.v.) after autonomic ganglionic blockade (5 mg/kg i.v. chlorisondamine), alpha1-adrenergic-mediated pressor responses (1-100 microg/kg i.v. phenylephrine) were not altered by chronic lesions of NTS, indicating vascular reactivity to sympathetic stimulation is normal. Transection of the spinal cord at T1 profoundly decreased AP and was not further reduced by chlorisondamine in control or denervated rats. Inhibition of the rostral ventrolateral medulla (RVLM) by microinjections of muscimol (100 pmol/side) decreased AP to levels not further reduced by chlorisondamine in control rats, rats with SAD, and rats with NTS lesions. Blockade of GABA(A) receptors in the RVLM (50 pmol/side bicuculline) increased AP similarly in control rats and denervated rats. In agreement, inhibition of the caudal ventrolateral medulla (CVLM) by microinjections of muscimol or blockade of glutamatergic inputs (2.7 nmol/side kynurenate) produced comparable increases in AP in control and denervated rats. These data suggest the RVLM continues to drive the SNA that regulates AP in the chronic absence of baroreceptor inputs. In addition, despite the absence of a tonic excitatory input from NTS, in chronic baroreceptor-denervated rats glutamatergic inputs drive the CVLM to tonically inhibit the RVLM. Baroreceptor-independent regulation of the ventrolateral medulla may underlie central mechanisms contributing to the long-term control of AP.  相似文献   

11.
Physiological and anatomic methods were used to determine whether neurons in the rostral ventrolateral medulla (RVLM), nucleus tractus solitarius (NTS), or hypothalamic paraventricular nucleus (PVN) mediate the cardiovascular response evoked from the dorsomedial hypothalamic nucleus (DMH), which is believed to play a key role in mediating responses to stress. In urethane-anesthetized rats, activation of neurons in the DMH by microinjection of bicuculline resulted in a large increase in arterial pressure, heart rate, and renal sympathetic nerve activity. The pressor and sympathoexcitatory responses, but not the tachycardic response, were greatly reduced after bilateral muscimol injections into the RVLM even when baseline arterial pressure was maintained at a constant level. These responses were not reduced by muscimol injections into the PVN or NTS. Retrograde tracing experiments identified many neurons in the DMH that projected directly to the RVLM. The results indicate that the vasomotor and cardiac components of the response evoked from the DMH are mediated by pathways that are dependent and independent, respectively, of neurons in the RVLM.  相似文献   

12.
1. This paper reviews studies carried out in our laboratory in which we have used the c-fos functional mapping method, in combination with other methods, to determine the functional organization of central baroreceptor pathways as they operate in the conscious rabbit.2. First, we showed that periods of induced hypertension or hypotension each result in a specific and reproducible pattern of activation of neurons in the brainstem and forebrain. In particular, hypotension (but not hypertension) results in the activation of catecholamine neurons in the medulla and pons and vasopressin-synthesizing neurons in the hypothalamus.3. The activation of medullary cell groups in response to induced hypertension or hypotension in the conscious rabbit is almost entirely dependent on inputs from arterial baroreceptors, while the activation of hypothalamic vasopressin-synthesising neurons in response to hypotension is largely dependent on baroreceptors, although an increase in circulating angiotensin also appears to contribute.4. Discrete groups of neurons in the rostral ventrolateral medulla (RVLM) and A5 area in the pons are the major groups of spinally projecting neurons activated by baroreceptor unloading. In contrast, spinally projecting neurons in the paraventricular nucleus in the hypothalamus appear to be largely unaffected by baroreceptor signals.5. Direct afferent inputs to RVLM neurons in response to increases or decreases in arterial pressure originate primarily from other medullary nuclei, particularly neurons located in the caudal and intermediate levels of the ventrolateral medulla (CVLM and IVLM), as well as in the nucleus tractus solitarius (NTS).6. There is also a direct projection from barosensory neurons in the NTS to the CVLM/IVLM region, which is activated by baroreceptor inputs.7. Collectively, the results of our studies in conscious animals indicate that baroreceptor signals reach all levels of the brain. With regard to the baroreceptor reflex control of sympathetic activity, our studies are consistent with previous studies in anesthetized animals, but in addition reveal other previously unrecognized pathways that also contribute to this reflex regulation.  相似文献   

13.
A major cause of stroke is cerebral ischemia in regions supplied by the middle cerebral artery (MCA). In this study, we hypothesized that compromised cardiovascular function during static exercise may involve altered expression of inducible NOS (iNOS) protein within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM). We compared cardiovascular responses and iNOS protein expression within the left and right sides of both RVLM and CVLM in sham-operated rats and in rats with a 90 min left-sided MCA occlusion (MCAO) followed by 24?h of reperfusion. Increases in blood pressure during a static muscle contraction were attenuated in MCAO rats compared with sham-operated rats. Also, iNOS expression within the left RVLM was augmented compared with the right RVLM in MCAO rats and compared with both RVLM quadrants in sham-operated rats. In contrast, compared with sham-operated rats and the right CVLM of MCAO rats, iNOS expression was attenuated in the left CVLM in left-sided MCAO rats. These data suggest that the attenuation of pressor responses during static exercise in MCAO rats involves overexpression of iNOS within the ipsilateral RVLM and attenuation in iNOS within the ipsilateral CVLM. Differential expression of iNOS within the medulla plays a role in mediating cardiovascular responses during static exercise following stroke.  相似文献   

14.
The localization of cholinergic neurons in the cat lower brain stem was determined immunocytochemically with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. ChAT-positive neurons were observed in four major cell groups: cranial nerve motor and special visceromotor neurons: parasympathetic preganglionic visceromotor neurons; neurons located in the ponto-mesencephalic tegmentum including area X (or pedunculopontine tegmental nucleus), nucleus laterodorsalis tegmenti (Ldt) of Castaldi, and peri-locus coeruleus alpha (peri-alpha); and neurons located in nucleus reticularis magnocellularis (Mc) and adjacent nucleus reticularis gigantocellularis (Gc) of the medulla.  相似文献   

15.
Expression of the immediate-early gene c-fos, a marker of neuronal activation was employed in adult anesthetized non-decerebrate cats, in order to localize the brainstem neuronal populations functionally related to sniff-like (gasp-like) aspiration reflex (AR). Tissues were immunoprocessed using an antibody raised against amino acids of Fos and the avidin-biotin peroxidase complex method. The level of Fos-like immunoreactivity (FLI) was identified and counted in particular brainstem sections under light microscopy using PC software evaluations in control, unstimulated cats and in cats where the AR was elicited by repeated mechanical stimulation of the nasopharyngeal region. Fourteen brainstem regions with FLI labeling, including thirty-seven nuclei were compared for the number of labeled cells. Compared to the control, a significantly enhanced FLI was determined bilaterally in animals with the AR, at various medullary levels. The areas included the nuclei of the solitary tract (especially the dorsal, interstitial and ventrolateral subnuclei), the ventromedial part of the parvocellular tegmental field (FTL -- lateral nuclei of reticular formation), the lateral reticular nucleus, the ambigual and para-ambigual regions, and the retrofacial nucleus. FLI was also observed in the gigantocellular tegmental field (FTG -- medial nuclei of reticular formation), the spinal trigeminal nucleus, in the medullar raphe nuclei (ncl. raphealis magnus and parvus), and in the medial and lateral vestibular nuclei. Within the pons, a significant FLI was observed bilaterally in the parabrachial nucleus (especially in its lateral subnucleus), the Kolliker-Fuse nucleus, the nucleus coeruleus, within the medial region of brachium conjunctivum, in the ventrolateral part of the pontine FTG and the FTL. Within the mesencephalon a significantly enhanced FLI was found at the central tegmental field (area ventralis tegmenti Tsai), bilaterally. Positive FLI found in columns extending from the caudal medulla oblongata, through the pons up to the mid-mesencephalon suggests that the aspiration reflex is thus co-ordinated by a long loop of medullary-pontine-mesencephalic control circuit rather than by a unique "center".  相似文献   

16.
In pathophysiological conditions, increased blood-borne TNF-alpha induces a broad range of biological effects, including activation of the hypothalamic-pituitary-adrenal axis and sympathetic drive. In urethane-anesthetized adult Sprague-Dawley rats, we examined the mechanisms by which blood-borne TNF-alpha activates neurons in paraventricular nucleus (PVN) of hypothalamus and rostral ventrolateral medulla (RVLM), two critical brain regions regulating sympathetic drive in normal and pathophysiological conditions. TNF-alpha (0.5 microg/kg), administered intravenously or into ipsilateral carotid artery (ICA), activated PVN and RLVM neurons and increased sympathetic nerve activity, arterial pressure, and heart rate. Responses to intravenous TNF-alpha were not affected by vagotomy but were reduced by mid-collicular decerebration. Responses to ICA TNF-alpha were substantially reduced by injection of the cyclooxygenase inhibitor ketorolac (150 microg) into lateral ventricle. Injection of PGE(2) (50 ng) into lateral ventricle or directly into PVN increased PVN or RVLM activity, respectively, and sympathetic drive, with shorter onset latency than blood-borne TNF-alpha. These findings suggest that blood-borne cytokines stimulate cardiovascular and renal sympathetic responses via a prostaglandin-dependent mechanism operating at the hypothalamic level.  相似文献   

17.
脑内血管紧张素Ⅱ系统在穹窿下器升压反应中的作用   总被引:7,自引:0,他引:7  
Chang YZ  Gu YH 《生理学报》1999,51(1):38-44
文献报道脑内存在血管紧张素Ⅱ系统。与此一致,本工作用氨基甲酸乙脂麻醉、箭毒制动、人工呼吸的大鼠观察到:(1)穹窿下器(SFO)、室旁核(NPV)或NPV的投射区:延髓头端腹外侧区(RVLM)、导水管周围灰质(PAG)、蓝斑(LC)内注入血管紧张素Ⅱ(AⅡ)均引起升压反应;(2)SFO升压反应可被双侧NPV或RVLM内预先注入[Sar1,Thr8]AⅡ(STAⅡ,AⅡ拮抗剂)明显衰减,NPV升压反应也可被RVLM内注入STAⅡ削弱;(3)双侧PAG用STAⅡ预处理后,AⅡ引起的NPV或SFO升压反应均明显减小;(4)NPV升压反应还可被双侧LC内预先注射STAⅡ衰减,但SFO升压反应不受影响。结合我们以往工作曾显示兴奋PAG或LC均可作用于RVLM引起升压反应,目前的结果表明:SFO内的AⅡ能神经元通过NPV内AⅡ能神经元,不仅可直接作用于RVLM引起升压反应,而且还可间接通过PAG作用于RVLM起升压作用,但LC不参与SFO升压反应。  相似文献   

18.
We used an optical imaging technique to investigate whether axons of neurons in the caudal end of the ventrolateral medulla (CeVLM), as well as axons of neurons in the rostral ventrolateral medulla (RVLM), project to neurons in the intermediolateral cell column (IML) of the spinal cord. Brain stem-spinal cord preparations from neonatal normotensive Wistar-Kyoto and spontaneously hypertensive rats were stained with a voltage-sensitive dye, and responses to electrical stimulation of the IML at the Th2 level were detected as changes in fluorescence intensity with an optical imaging apparatus (MiCAM-01). The results were as follows: 1) depolarizing responses to IML stimulation during low-Ca high-Mg superfusion were detected on the ventral surface of the medulla at the level of the CeVLM, as well as at the level of the RVLM, 2) depolarizing responses were also detected on cross sections at the level of the CeVLM, and they had a latency of 24.0 +/- 5.5 (SD) ms, 3) antidromic action potentials in response to IML stimulation were demonstrated in the CeVLM neurons where optical images were detected, and 4) glutamate application to the CeVLM increased the frequency of excitatory postsynaptic potentials (EPSPs) and induced depolarization of the IML neurons. The optical imaging findings suggested a novel axonal and functional projection from neurons in the CeVLM to the IML. The increase in EPSPs of the IML neurons in response to glutamate application suggests that the CeVLM participates in the regulation of sympathetic nerve activity and blood pressure and may correspond to the caudal pressor area.  相似文献   

19.
1. The aim of these studies was to test the hypothesis that glutamate is the principal excitatory neurotransmitter in the sympathetic premotor pathway from the rostral ventrolateral medulla (RVLM) to the sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord.2. Iontophoretic and pressure ejection of glutamate receptor agonists and antagonists was made onto antidromically identified splanchnic and adrenal SPNs before and during electrical stimulation of the RVLM in urethane/chloralose-anesthetized, artificially ventilated rats.3. SPNs were excited by both NMDA and non-NMDA glutamate receptor agonists. Blockade of glutamate receptors in the IML interrupted the ability of electrical activation of sympathetic premotor neurons in the RVLM to excite SPNs. Within the IML, antergradely labeled terminals of RVLM neurons were found to contain glutamate immunoreactivity and to make asymmetric synapses on local dendrites.4. These data support a significant role for glutamate neurotransmission in mediating the tonic and phasic excitation of SPNs by the sympathetic premotor pathway from the RVLM. It seems likely that stimulation of the RVLM produces glutamate release from both C1 and non-PNMT-containing axon terminals in the IML.  相似文献   

20.
孙洪兆 《生命科学》2012,(6):588-592
神经解剖学和生理学的研究证明,迷走神经背核(dorsal motor nucleus of the vagus,DMV)是调控胃机能的重要副交感初级中枢。支配胃的迷走神经纤维主要发自于延髓的DMV。就DMV的细胞构筑和突触联系、DMV对胃的神经支配、电刺激DMV对胃机能的影响以及DMV内的神经递质和受体对胃机能的调控进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号