首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 +/- 0.1) or in water (pH 7.2 +/- 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25 degrees C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4 degrees C and lowest at 25 degrees C. The pathogen survived without growth in water washings at 4 and 10 degrees C, while it grew by 0.8 to 2.7 log cycles at 15 and 25 degrees C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10 degrees C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25 degrees C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15 degrees C > 10 degrees C > 4 degrees C, while at 25 degrees C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15 degrees C may maintain a higher acid resistance than when acid habituated at 4 degrees C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

2.
The effect of pH reduction with acetic (pH 5.2), citric (pH 4.0), lactic (pH 4.7), malic (pH 4.0), mandelic (pH 5.0), or tartaric (pH 4.1) acid on growth and survival of Escherichia coli O157:H7 in tryptic soy broth with 0.6% yeast extract held at 25, 10, or 4 degrees C for 56 days was determined. Triplicate flasks were prepared for each acid treatment at each temperature. At 25 degrees C, populations increased 2 to 4 log10 CFU/ml in all treatments except that with mandelic acid, whereas no growth occurred at 10 or 4 degrees C in any treatments except the control. However, at all sampling times, higher (P < 0.05) populations were recovered from treatments held at 4 degrees C than from those held at 10 degrees C. At 10 degrees C, E. coli O157:H7 was inactivated at higher rates in citric, malic, and mandelic acid treatments than in the other treatments. At the pH values tested, the presence of the organic acids enhanced survival of the pathogen at 4 degrees C compared with the unacidified control. E. coli O157:H7 has the ability to survive in acidic conditions (pH, > or = 4.0) for up to 56 days, but survival is affected by type of acidulant and temperature.  相似文献   

3.
The survival of unheated and heat-stressed (52 degrees C, 30 min) cells of Escherichia coli O157:H7 inoculated into tryptic soy broth (TSB) adjusted to various pHs (6.0, 5.4, and 4.8) with lactic acid and various water activities (a(w)s) (0.99, 0.95, and 0.90) with NaCl and incubated at 5, 20, 30, and 37 degrees C was studied. The performance of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), and modified eosin methylene blue agar in supporting colony development of incubated cells was determined. Unheated cells of E. coli O157:H7 grew to population densities of 10(8) to 10(9) CFU ml-1 in TSB (pHs 6.0 and 5.4) at an a(w) of 0.99. Regardless of the pH and a(w) of TSB, survival of E. coli O157:H7 was better at 5 degrees C than at 20 or 30 degrees C. At 30 degrees C, inactivation or inhibition of growth was enhanced by reduction of the a(w) and pH. A decrease in the a(w) (0.99 to 0.90) of TSB in which the cells were heated at 52 degrees C for 30 min resulted in a 1.5-log10 reduction in the number of E. coli O157:H7 cells recovered on TSA; pH did not significantly affect the viability of cells. Recovery was significantly reduced on MSMA when cells were heated in TSB with reduced pH or a(w) for an increased length of time. With the exception of TSB (a(w), 0.90) incubated at 37 degrees C, heat-stressed cells survived for 24 h in recovery broth. TSB (a(w), 0.99) at pH 6.0 or 5.4 supported growth of E. coli O157:H7 cells at 20 or 37 degrees C, but higher numbers of heated cells survived at 5 or 20 degrees C than at 37 degrees C. The ability of unheated and heat-stressed E. coli O157:H7 cells to survive or grow as affected by the a(w) of processed salami was investigated. Decreases of about 1 to 2 log10 CFU g-1 occurred soon after inoculation of salami (pHs 4.86 and 4.63 at a(w)s of 0.95 and 0.90, respectively). Regardless of the physiological condition of the cells before inoculation into processed salami at an a(w) of either 0.95 or 0.90, decreases in populations occurred during storage at 5 or 20 degrees C for 32 days. If present at < or = 100 CFU g-1, E. coli O157:H7 would unlikely survive storage at 5 degrees C for 32 days. However, contamination of salami with E. coli O157:H7 at 10(4) to 10(5) CFU g-1 after processing would pose a health risk to consumers for more than 32 days if storage were at 5 degrees C. Regardless of the treatment conditions, performance of the media tested for the recovery of E. coli O157:H7 cells followed the order TSA > modified eosin methylene blue agar > MSMA.  相似文献   

4.
The influence of pH adjusted with lactic acid or HCl or sodium chloride concentration on survival or growth of Escherichia coli O157:H7 in Trypticase soy broth (TSB) was determined. Studies also determined the fate of E. coli O157:H7 during the production and storage of fermented, dry sausage. The organism grew in TSB containing less than or equal to 6.5% NaCl or at a pH of 4.5 to 9.0, adjusted with HCl. When TSB was acidified with lactic acid, the organism grew at pH 4.6 but not at pH 4.5. A commercial sausage batter inoculated with 4.8 x 10(4) E. coli O157:H7 per g was fermented to pH 4.8 and dried until the moisture/protein ratio was less than or equal to 1.9:1. The sausage chubs were then vacuum packaged and stored at 4 degrees C for 2 months. The organism survived but did not grow during fermentation, drying, or subsequent storage at 4 degrees C and decreased by about 2 log10 CFU/g by the end of storage. These studies reveal the importance of using beef containing low populations or no E. coli O157:H7 in sausage batter, because when initially present at 10(4) CFU/g, this organism can survive fermentation, drying, and storage of fermented sausage regardless of whether an added starter culture was used.  相似文献   

5.
A study was carried out to determine if three strains of Escherichia coli O157:H7 grown (18 h) in Tryptic Soy Broth (TSB) and TSB supplemented with 1.25% glucose (TSBG), i.e. unadapted and acid-adapted cells, respectively, exhibited changes in tolerance to reduced pH when plated on Tryptic Soy Agar (TSA) acidified (pH 3.9, 4.2, 4.5, 4.8, 5.1 and 5.4) with acetic, citric or malic acids. All test strains grew well on TSA acidified with acetic acid at pH > or = 5.4 or malic acid at pH > or = 4.5; two strains grew on TSA acidified with citric acid at pH > or = 4.5, while the third strain grew at pH > or = 4.8. Acid-adapted and control (unadapted) cells differed little in their ability to form visible colonies on TSA containing the same acid at the same pH. However, on plates not showing visible colonies, acid-adapted cells retained higher viability than unadapted cells when plated on acidified TSA. Growth of acid-adapted and control cells of E. coli O157:H7 inoculated into TSB containing acetic acid (pH 5.4 and 5.7) and citric or malic acids (pH 4.2 and 4.5) was also studied. There was essentially no difference in growth characteristics of the two types of cells in TSB acidified at the same pH with a given acid. Tolerance of acid-adapted and control cells on subsequent exposure to low pH is influenced by the type of acidulant. The order of sensitivity at a given pH is acetic > citric > malic acid. When performing acid challenge studies to determine survival and growth characteristics of E. coli O157:H7 in foods, consideration should be given to the type of acid to which cells have been exposed previously, the procedure used to achieve acidic environments and possible differences in response among strains. The use of strains less affected by pH than type of acidulant or vice versa could result in an underestimation of the potential for survival and growth of E. coli O157:H7 in acid foods.  相似文献   

6.
Exposure to low pH and organic acids in the bovine gastrointestinal tract may result in the induced acid resistance of Escherichia coli O157:H7 and other pathogens that may subsequently contaminate beef carcasses. The effect of acid adaptation of E. coli O157:H7 on the ability of acetic acid spray washing to reduce populations of this organism on beef carcass tissue was examined. Stationary-phase acid resistance and the ability to induce acid tolerance were determined for a collection of E. coli O157:H7 strains by testing the survival of acid-adapted and unadapted cells in HCl-acidified tryptic soy broth (pH 2.5). Three E. coli O157:H7 strains that were categorized as acid resistant (ATCC 43895) or acid sensitive (ATCC 43890) or that demonstrated inducible acid tolerance (ATCC 43889) were used in spray wash studies. Prerigor beef carcass surface tissue was inoculated with bovine feces containing either acid-adapted or unadapted E. coli O157:H7. The beef tissue was subjected to spray washing treatments with water or 2% acetic acid or left untreated. For strains ATCC 43895 and 43889, larger populations of acid-adapted cells than of unadapted cells remained on beef tissue following 2% acetic acid treatments and these differences remained throughout 14 days of 4 degrees C storage. For both strains, numbers of acid-adapted cells remaining on tissue following 2% acetic acid treatments were similar to numbers of both acid-adapted and unadapted cells remaining on tissue following water treatments. For strain ATCC 43890, there was no difference between populations of acid-adapted and unadapted cells remaining on beef tissue immediately following 2% acetic acid treatments. These data indicate that adaptation to acidic conditions by E. coli O157:H7 can negatively influence the effectiveness of 2% acetic acid spray washing in reducing the numbers of this organism on carcasses.  相似文献   

7.
Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.  相似文献   

8.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HCl to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20 degrees, 10 degrees, 7 degrees and 4 degrees C for 21 d was in the ranges 4.18-4.36, 4.26-4.50, 4.36-4.83 and 4.42-4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/l acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/l citric acid adjusted to pH values between 4.1 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/l lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic greater than lactic greater than citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

9.
AIMS: To investigate whether Escherichia coli O157:H7 maintains acid tolerance in water meat decontamination washing fluids. METHODS AND RESULTS: A rifampicin-resistant derivative of E. coli O157:H7 strain ATCC 43895 was inoculated (10(5) cfu ml(-1)) in spray-washings from meat sprayed with cold (10 degrees C) or hot (85 degrees C) water, stored at 10 degrees C for up to 14 days, and its acid tolerance was assessed at 2 and 8 days by exposure to broth or new washings adjusted to pH 3.5 or 3.7 with lactic or acetic acid. The pathogen survived in the water washings, but it was outgrown by the natural, Pseudomonas-like flora, and it was sensitized to acid. CONCLUSIONS: The acid tolerance of E. coli O157:H7 decreases following exposure to non-acid, but otherwise stressful, conditions prevailing in water meat washings at 10 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that the more intense use of water-based technologies should be included in meat decontamination strategies because they may contribute to enhanced meat safety by inducing acid sensitization in E. coli O157:H7.  相似文献   

10.
AIMS: This study was conducted to validate combined heat and acid treatments for inactivating Escherichia coli O157:H7, Listeria monocytogenes and Salmonella typhimurium in an acidified brine containing, or pickled, asparagus model food. METHODS AND RESULTS: A mixture of three strains of E. coli O157:H7, L. monocytogenes and S. typhimurium were inoculated onto pickled asparagus samples. Combinations of various concentrations of acetic acid [0%, 0.25%, 0.5%, 0.75%, 1%, 1.5% and 2% (v/v)] and various temperatures (40 degrees C, 50 degrees C, 60 degrees C and 75 degrees C) were investigated. Following treatment, asparagus samples were stored at room temperature and enumerated at 0, 0.5, 1, 2 and 3 days. Heat and acetic acid treatments were synergistic. The inhibitory effects of these combined treatments on the tested foodborne pathogens were also effective during storage. Loss of green colour in the pickled asparagus significantly increased with increasing concentrations of acetic acid. CONCLUSIONS: Using a combination of mild heat and acetic acid treatments can successfully control E. coli O157:H7, L. monocytogenes and S. typhimurium in pickled asparagus, combinations of heat and acid are synergistic and effective treatments can be selected to reduce adverse effect on colour which occur during product storage. SIGNIFICANCE AND IMPACT OF THE STUDY: Mild heating plus acetic acid treatment are synergistic, so combined treatments can be developed, which would lower the temperature and amount of acetic acid required for minimally processed vegetables while maintaining pathogen control.  相似文献   

11.
In the last 20 years Escherichia coli O157: H7 has emerged as a new pathogen, causing worldwide disease, death and economic loss. Different studies have revealed important survival characteristics of this pathogen, although there are divergent criteria about its ability to survive in various mayonnaise formulations. We studied the effect of different mayonnaise concentrations (0%, 18%, 37% and 56%) (weight/weight) over the survival of the bacterium in common foods from a neotropical environment (Costa Rica). High [10(7)-10(8) Colony Forming Units (CFU)/ml] and low E. coli populations (10(4)-10(6) CFU/ml) were inoculated, (three replicates) in meat, chopped cabbage and poultry, and mixed with commercial mayonnaise to obtain the concentrations specified. They were incubated at 12 degrees C for 24, 48 and 72 hr. The E. coli O157: H7 enumeration was done according to a standard methodology. Populations of E. coli O157: H7 showed an increasing trend during the first incubation period (48 hr), in all the preparations, regardless of the fat concentration used. Our data indicate that E. coli O157: H7 is capable of surviving and growing in meat, cabbage and poultry mixed with mayonnaise, independently of its concentration.  相似文献   

12.
This study was undertaken to determine the survivability of low-density populations (10(0) and 10(2) CFU/g) of enterohemorrhagic Escherichia coli O157:H7 inoculated into real mayonnaise and reduced-calorie mayonnaise dressing and stored at 20 and 30 degrees C, temperatures within the range used for normal commercial mayonnaise distribution and storage. Inactivation patterns at 5 degrees C and inactivation of high-inoculum populations (10(6) CFU/g) were also determined. The pathogen did not grow in either mayonnaise formulation, regardless of the inoculum level or storage temperature. Increases in storage temperature from 5 to 20 degrees C and from 20 to 30 degrees C resulted in dramatic increases in the rate of inactivation. Populations of E. coli O157:H7 in the reduced-calorie and real formulations inoculated with a population of 0.23 to 0.29 log10 CFU/g and held at 30 degrees C were reduced to undetectable levels within 1 and 2 days, respectively; viable cells were not detected after 1 day at 20 degrees C. In mayonnaise containing an initial population of 2.23 log10 CFU/g, viable cells were not detected after 4 days at 30 degrees C or 7 days at 20 degrees C; tolerance was greater in real mayonnaise than in reduced-calorie mayonnaise dressing stored at 5 degrees C. The tolerance of E. coli O157:H7 inoculated at the highest population density (6.23 log 10 CFU/g) was less in reduced-calorie mayonnaise dressing than in real mayonnaise at all storage temperatures. In reduced-calorie mayonnaise dressing and real mayonnaise initially containing 2.23 log10 CFU/g, levels were undetectable after 28 and 58 days at 5 degrees C, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Outbreaks of disease due to acid-tolerant bacterial pathogens in apple cider and orange juice have raised questions about the safety of acidified foods. Using gluconic acid as a noninhibitory low-pH buffer, we investigated the killing of Escherichia coli O157:H7 strains in the presence or absence of selected organic acids (pH of 3.2), with ionic strength adjusted to 0.60 to 0.68. During a 6-h exposure period in buffered solution (pH 3.2), we found that a population of acid-adapted E. coli O157:H7 strains was reduced by 4 log cycles in the absence of added organic acids. Surprisingly, reduced lethality for E. coli O157:H7 was observed when low concentrations (5 mM) of fully protonated acetic, malic, or l-lactic acid were added. Only a 2- to 3-log reduction in cell counts was observed, instead of the 4-log reduction attributed to pH effects in the buffered solution. Higher concentrations of these acids at the same pH aided in the killing of the E. coli cells, resulting in a 6-log or greater reduction in cell numbers. No protective effect was observed when citric acid was added to the E. coli cells. d-Lactic acid had a greater protective effect than other acids at concentrations of 1 to 20 mM. Less than a 1-log decrease in cell numbers occurred during the 6-h exposure to pH 3.2. To our knowledge, this is the first report of the protective effect of organic acids on the survival of E. coli O15:H7 under low-pH conditions.  相似文献   

14.
AIMS: To comparatively evaluate the adaptive stationary-phase acid tolerance response (ATR) in food-borne pathogens induced by culturing in glucose-containing media, as affected by strain variability and antibiotic resistance, growth temperature, challenge pH and type of acidulant. METHODS AND RESULTS: Antibiotic resistant or sensitive strains of Listeria monocytogenes, Salmonella including S. Typhimurium DT104, and Escherichia coli O157:H7 were cultured (30 degrees C for 24 h; 10 degrees C for up to 14 days) in trypticase soya broth with yeast extract (TSBYE) with 1% or without glucose to induce or prevent acid adaptation, respectively. Cultures were subsequently exposed to pH 3.5 or 3.7 with lactic or acetic acid at 25 degrees C for 120 min. Acid-adapted cultures were more acid tolerant than nonadapted cultures, particularly those of L. monocytogenes and Salmonella. No consistent, positive or negative, influence of antibiotic resistance on the pH-inducible ATR or acid resistance (AR) was observed. Compared with 30 degrees C cultures, growth and acid adaptation of L. monocytogenes and S. Typhimurium DT104 at 10 degrees C markedly reduced their ATR and AR in stationary phase. E. coli O157:H7 had the greatest AR, relying less on acid adaptation. A 0.2 unit difference in challenge pH (3.5-3.7) caused great variations in survival of acid-adapted and nonadapted cells. CONCLUSIONS: Culturing L. monocytogenes and Salmonella to stationary phase in media with 1% glucose induces a pH-dependent ATR and enhances their survival to organic acids; thus, this method is suitable for producing acid-adapted cultures for use in food challenge studies. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial pathogens may become acid-adapted in foods containing glucose or other fermentable carbohydrates. Low storage temperatures may substantially decrease the stationary-phase ATR of L. monocytogenes and S. Typhimurium DT104, but their effect on ATR of E. coli O157:H7 appears to be far less dramatic.  相似文献   

15.
This study evaluated the impact of inoculum preparation and storage conditions on the response of Escherichia coli O157:H7 exposed to consumer-induced stresses simulating undercooking and digestion. Lean beef tissue samples were inoculated with E. coli O157:H7 cultures prepared in tryptic soy broth or meat decontamination runoff fluids (WASH) or detached from moist biofilms or dried biofilms formed on stainless steel coupons immersed in inoculated WASH. After inoculation, the samples were left untreated or dipped for 30 s each in hot (75 degrees C) water followed by lactic acid (2%, 55 degrees C), vacuum packaged, stored at 4 (28 days) or 12 degrees C (16 days), and periodically transferred to aerobic storage (7 degrees C for 5 days). During storage, samples were exposed to sequential heat (55 degrees C; 20 min) and simulated gastric fluid (adjusted to pH 1.0 with HCl; 90 min) stresses simulating consumption of undercooked beef. Under the conditions of this study, cells originating from inocula of planktonic cells were, in general, more resistant to heat and acid than cells from cultures grown as biofilms and detached prior to meat inoculation. Heat and acid tolerance of cells on meat stored at 4 degrees C was lower than that of cells on nondecontaminated meat stored at 12 degrees C, where growth occurred during storage. Decontamination of fresh beef resulted in injury that inhibited subsequent growth of surviving cells at 12 degrees C, as well as in decreases in resistance to subsequent heat and acid stresses. The shift of pathogen cells on beef stored under vacuum at 4 degrees C to aerobic storage did not affect cell populations or subsequent survival after sequential exposure to heat and simulated gastric fluid. However, the transfer of meat stored under vacuum at 12 degrees C to aerobic storage resulted in reduction in pathogen counts during aerobic storage and sensitization of survivors to the effects of sequential heat and acid exposure.  相似文献   

16.
This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22 degrees C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (10(6) to 10(7) CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22 degrees C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5 degrees C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22 degrees C than at 5 degrees C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.  相似文献   

17.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HC1 to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20°, 10°, 7° and 4°C for 21 d was in the ranges 4.18–4.36, 4.26–4.50, 4.36–4.83 and 4.42–4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/1 acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/1 citric acid adjusted to pH values between 41 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/1 lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic > lactic > citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

18.
AIMS: The objective of this study was to investigate the potential value of individual and combined applications of some GRAS (generally regarded as safe) additives with freezing and pulsed electric field (PEF) application, in reducing the risks associated with the presence of E. coli O157:H7 in beef burgers. METHODS AND RESULTS: Beef burgers, trimmings and filter paper were inoculated with E. coli O157:H7 and subjected to a range of chemical and physical treatments. Sequential application of 2% (v/v) lactic acid and freezing (at - 20 degrees C for 2 h) resulted in a decrease of approximately 6 log10 cfu cm(-1) in E. coli O157:H7, but only on filter paper. All other treatments were ineffective. CONCLUSIONS: Currently available methods for controlling E.coli O157:H7 in beef burgers during production are ineffective. SIGNIFICANCE AND IMPACT OF THE STUDY: Further research is needed to develop controls for E. coli O157:H7 during beef burger production.  相似文献   

19.
Raw ground beef patties inoculated with stationary-phase cells of Escherichia coli O157:H7, salmonellae, or Campylobacter jejuni were subjected to gamma irradiation (60Co) treatment, with doses ranging from 0 to 2.52 kGy. The influence of two levels of fat (8 to 14% [low fat] and 27 to 28% [high fat]) and temperature (frozen [-17 to -15 degrees C] and refrigerated [3 to 5 degrees C]) on the inactivation of each pathogen by irradiation was investigated. In ascending order of irradiation resistance, the D10 values ranged from 0.175 to 0.235 kGy (C. jejuni), from 0.241 to 0.307 kGy (E. coli O157:H7), and from 0.618 to 0.800 kGy (salmonellae). Statistical analysis revealed that E. coli O157:H7 had a significantly (P < 0.05) higher D10 value when irradiated at -17 to -15 degrees C than when irradiated at 3 to 5 degrees C. Regardless of the temperature during irradiation, the level of fat did not have a significant effect on the D10 value. Salmonellae behaved like E. coli O157:H7 in low-fat beef, but temperature did not have a significant effect when the pathogen was irradiated in high-fat ground beef. Significantly higher D10 values were calculated for C. jejuni irradiated in frozen than in refrigerated low-fat beef. C. jejuni was more resistant to irradiation in low-fat beef than in high-fat beef when treatment was at -17 to -15 degrees C. Regardless of the fat level and temperature during inactivation, these pathogens were highly sensitive to gamma irradiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Unheated and heated (1 min at 121°C) Bacillus stearothermophilus spores were grown in non-acidified (pH 7) and acidified recovery medium at different pH levels (6.7, 6.5, 6.2 and 5.9) using citric acid or glucono-δ-lactone (GDL) as acidulants. It was observed that the lower the pH, the lower the proportion of micro-organisms which recovered. The level of recovery was not the same for both acidulants, meaning that at the same pH level citric acid showed a greater inhibitory effect that glucono-δ-lactone. Heat treatment sensitized spores to pH effect. A linear relationship of the behaviour of spores with each acidulant is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号